Testing | |
Package | |
Meta |
pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way towards this goal.
Main Features
Where to get it
Dependencies
Installation from sources
License
Documentation
Background
Getting Help
Discussion and Development
Contributing to pandas
Here are just a few of the things that pandas does well:
Easy handling of missing data (represented asNaN
, NA
, or NaT
) in floating point as well as non-floating point data
Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
Automatic and explicit data alignment: objects can
be explicitly aligned to a set of labels, or the user can simply
ignore the labels and let Series
, DataFrame
, etc. automatically
align the data for you in computations
Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
Intuitive merging and joining data sets
Flexible reshaping and pivoting of data sets
Hierarchical labeling of axes (possible to have multiple labels per tick)
Robust IO tools for loading data from flat files(CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format
Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging
The source code is currently hosted on GitHub at: https://github.com/pandas-dev/pandas
Binary installers for the latest released version are available at the Python Package Index (PyPI) and on Conda.
# condaconda install -c conda-forge pandas
# or PyPIpip install pandas
The list of changes to pandas between each release can be found here. For full details, see the commit logs at https://github.com/pandas-dev/pandas.
NumPy - Adds support for large, multi-dimensional arrays, matrices and high-level mathematical functions to operate on these arrays
python-dateutil - Provides powerful extensions to the standard datetime module
pytz - Brings the Olson tz database into Python which allows accurate and cross platform timezone calculations
See the full installation instructions for minimum supported versions of required, recommended and optional dependencies.
To install pandas from source you need Cython in addition to the normal dependencies above. Cython can be installed from PyPI:
pip install cython
In the pandas
directory (same one where you found this file after
cloning the git repo), execute:
pip install .
or for installing in development mode:
python -m pip install -ve . --no-build-isolation -Ceditable-verbose=true
See the full instructions for installing from source.
BSD 3
The official documentation is hosted on PyData.org.
Work on pandas
started at AQR (a quantitative hedge fund) in 2008 and
has been under active development since then.
For usage questions, the best place to go to is StackOverflow. Further, general questions and discussions can also take place on the pydata mailing list.
Most development discussions take place on GitHub in this repo, via the GitHub issue tracker.
Further, the pandas-dev mailing list can also be used for specialized discussions or design issues, and a Slack channel is available for quick development related questions.
There are also frequent community meetings for project maintainers open to the community as well as monthly new contributor meetings to help support new contributors.
Additional information on the communication channels can be found on the contributor community page.
All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.
A detailed overview on how to contribute can be found in the contributing guide.
If you are simply looking to start working with the pandas codebase, navigate to the GitHub "issues" tab and start looking through interesting issues. There are a number of issues listed under Docs and good first issue where you could start out.
You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to subscribe to pandas on CodeTriage.
Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!
Feel free to ask questions on the mailing list or on Slack.
As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: Contributor Code of Conduct
Go to Top