In JS we trust - The best way to learn is by building/coding and teaching. I create the challenges to help my friends learn JavaScript and in return it helps me embrace the language in much deeper level. Feel free to clone, fork and pull.
function a(x) {
x++;
return function () {
console.log(++x);
};
}
a(1)();
a(1)();
a(1)();
let x = a(1);
x();
x();
x();
1, 2, 3
and 1, 2, 3
3, 3, 3
and 3, 4, 5
3, 3, 3
and 1, 2, 3
1, 2, 3
and 3, 3, 3
This question revisits closure - one of the most confusing concepts in JavaScript. Closure allows us to create a stateful function
and such a function can access to the variable outside of its scope. In a nutshell, a closure can have access to the global
variable (scope), father function
scope and its
own scope.
We have here, the only one correct answer, 3, 3, 3 and 3, 4, 5 because first we simply call the function a()
. It works like a normal function and we have not seen anything so-called stateful
yet. In the following code, we declare a variable x
and it stores the value of function a(1)
, that is why we get 3. 4. 5 rather than 3, 3, 3.
This kind of gotcha gives me the feeling of static
variable in PHP world.
function Name(a, b) {
this.a = a;
this.b = b;
}
const me = Name("Vuong", "Nguyen");
console.log(!(a.length - window.a.length));
undefined
NaN
true
false
We get true in the console. The tricky part is when we create an object from the constructor function Name but we DO NOT USE new
keywork. That makes the variable a
global one and get the value "Vuong". Remember that it is actually a property of the global object window
(in the browser) or global
in the nodejs.
We then get a.length
~ 5 and window.a.length
~ 5 which return 0. !0 returns true.
Imagine what would happen when we create the instance me
with the new
keywork. That is an interesting inquire!
const x = function (...x) {
let k = (typeof x).length;
let y = () => "freetut".length;
let z = { y: y };
return k - z.y();
};
console.log(Boolean(x()));
true
false
The spread operator ...x
might help us obtain the parameter in the function in the form of array. Yet, in Javascript the typeof array return "object" rather than "array". It is totally odd if you are coming from PHP.
That is said, we now have the length of the string object
which returns 6. z.y() simply returns the length of the string 'freetut' (7).
Be aware that the function x() (in the form of function express
or anonymous function
(if you are coming from PHP) return -1 when being called and when converted to bool with Boolean(-1)
return true instead of false. Noted that Boolean(0)
return false.
(function js(x) {
const y = (j) => j * x;
console.log(y(s()));
function s() {
return j();
}
function j() {
return x ** x;
}
})(3);
undefined
The function js()
can be automatically executed without calling it and known as IIFE (Immediately Invoked Function Expression). Noted the parameter x
of the function js
is actuallly passed with the value 3.
The value return of the function is y(s())), meaning calling three other functions y()
, s()
and j()
because the function s()
returns j()
.
j() returns 3^3 = 27 so that s() returns 27.
y(s()) means y(27) which returns 27*3 = 81.
Note that we can call declare function
BEFORE the function is actually declared but not with expression function
.
var tip = 100;
(function () {
console.log("I have $" + husband());
function wife() {
return tip * 2;
}
function husband() {
return wife() / 2;
}
var tip = 10;
})();
We have here an IIFE (Immediately Invoked Function Expression). It means we do not have to call it but it will be excuted automatically when declared. The flow is as: husband() returns wife()/2 and wife() returns tip*2.
We might think that tip = 100 because it is a global variable when declaring with var
keyword. However, it is actually undefined
because we also have var tip = 10
INSIDE the function. As the variable tip
is hoisted with default value undefined
, the final result would be D. We know that undefined
returns NaN when we try to divide to 2 or multiple with 2.
If we do not re-declare var tip = 10;
at the end of the function, we will definately get B.
JS is fun, right?
const js = { language: "loosely type", label: "difficult" };
const edu = { ...js, level: "PhD" };
const newbie = edu;
delete edu.language;
console.log(Object.keys(newbie).length);
This challenge revises the ES6's feature regarding spread operator ...
Spread operator is quite useful for retrieving parameter in function, to unite
or combine
object and array in JavaScript. PHP also has this feature.
In the variable edu
, we use ...js
(spread operator here) to combine both objects into one. It works in the same way with array.
Then we declare another variable named newbie
. IMPORTANT note: By declaring the variable like that, both variables point to the SAME POSITION in the memory. We may have known something like $a = &$b
in PHP, which let both varibles work in the same way. We might have known about pass by reference
in the case.
Then we have 2 as edu.language
is deleted. Both objects now have only two elements.
Now is time to think about coping an object in JS either shallow or deep one.
var candidate = {
name: "Vuong",
age: 30,
};
var job = {
frontend: "Vuejs or Reactjs",
backend: "PHP and Laravel",
city: "Auckland",
};
class Combine {
static get() {
return Object.assign(candidate, job);
}
static count() {
return Object.keys(this.get()).length;
}
}
console.log(Combine.count());
The buit-in method Object.assign(candidate, job)
merges the two objects candidate
and job
into one object. Then the method Object.keys
counts the number of key
in the object.
Note that two methods get()
and count()
are defined as static
, so they need to be called statically using Class.staticmethod()
syntax. Then the final object get 5 elements.
var x = 1;
(() => {
x += 1;
++x;
})();
((y) => {
x += y;
x = x % y;
})(2);
(() => (x += x))();
(() => (x *= x))();
console.log(x);
Initially x
is declared with the value 1. In the first IIFE function, there are two operations. First x
becomes 2 and then 3.
In the second IIFE function, x = x + y
then the current value is 5. In the second operation, it returns only 1 as it undergoes 5%2
.
In the third and fouth IIFE functions, we get 2 x = x + x
and then 4 x = x * x
. It is more than simple.
$var = 10;
$f = function($let) use ($var) {
return ++$let + $var;
};
$var = 15;
echo $f(10);
var x = 10;
const f = (l) => ++l + x;
x = 15;
console.log(f(10));
This question illustrates the diffences between PHP and JavaScript when handling closure. In the first snippet, we declare a closure with the keyword use
. Closure in PHP is simply an anonymous function and the data is passed to the function using the keyword use
. Otherwise, it is called as lambda
when we do not use the keyword use
. You can check the result of the snippet here https://3v4l.org/PSeMY. PHP closure
only accepts the value of the variable BEFORE the closure is defined, no matter where it is called. As such, $var
is 10 rather than 15.
On the contrary, JavaScript treats the variable a bit different when it is passed to anonymous function. We do not have to use the keyword use
here to pass variable to the closure. The variable x
in the second snippet is updated before the closure is called, then we get 26.
Note that in PHP 7.4, we have arrow function and we then do not have to use the keyword use
to pass the variable to function. Another way to call a global
ariable inside a function in PHP is to use the keyword global
or employ the built-in GLOBAL variable $GLOBALS.
let x = {};
let y = {};
let z = x;
console.log(x == y);
console.log(x === y);
console.log(x == z);
console.log(x === z);
Technically, x
and y
have the same value. Both are empty objects. However, we do not use the value to compare objects.
z
is x
are two objects referring to the same memory position. In JavaScript, array and object are passed by reference
. x
and z
therefore return true when being compared.
console.log("hello");
setTimeout(() => console.log("world"), 0);
console.log("hi");
Given that the function setTimeout() will be kept in the task queue
before jumping back to stack,
"hello" and "hi" will be printed first, then A is incorrect. That is also the case of the answers C and D.
No matter how many seconds you set to the setTimeout()
function, it will run after synchronous code. So we will get "hello" first as it is put into the call stack first. Though the setTimeout()
is then being put into the call stack, it will subsequently offload to web API (or Node API) and then being called when other synchronous codes are cleared. It means we then get "hi" and finally "world".
So B is the correct answer.
Credit: @kaitoubg (voz) for your suggestion regarding the timeout throttled
by which I have decided to alter the question slightly. It will ensure that readers will not get confused as the previous code might bring out different results when tested on other browsers or environments. The main point of the question is about the discrepancy between the synchronous code and asynchronous code when using setTimeout.
.
String.prototype.lengthy = () => {
console.log("hello");
};
let x = { name: "Vuong" };
delete x;
x.name.lengthy();
String.prototype.someThing = function () {}
is the common way to define a new built-in method for String
. We can do the same thing with Array
, Object
or FunctionName
where FunctionName is the function designed by ourself.
That is not challenging to realise that "string".lengthy()
always returns hello
. Yet, the tricky part lies in the delete object
where we might think that this expression will entirely delete the object. That is not the case as delete
is used to delete the property of the object only. It does not delete the object. Then we get hello
rather than ReferenceError
.
Note that if we declare object without let, const
or var
, we then have a global object. delete objectName
then return true
. Otherwise, it always returns false
.
let x = {};
x.__proto__.hi = 10;
Object.prototype.hi = ++x.hi;
console.log(x.hi + Object.keys(x).length);
First we have an empty object x
, then we add another property hi
for x with x.__proto__.hi
. Note this is equivalent to Object.prototype.hi = 10
and we are adding to the father
object Object
the property hi
. It means every single object will inherit this propety. The property hi
becomes a shared one. Say now we declare a new object such as let y = {}
, y
now has a propery hi
inherited from the father
Object
. Put it simply x.__proto__ === Object.prototype
returns true
.
Then we overwrite the property hi
with a new value 11. Last we have 11 + 1 = 12. x
has one property and x.hi
returns 11.
Updated (July 27th 2021). If you write Object.prototype.hi = 11;
instead of Object.prototype.hi = ++x.hi;
as written in the code above, then Object.keys(x)
will return an empty array as Object.keys(object)
only returns the property of the object itself, not the inherited ones. It means the final result will be 11 rather than 12. For some reason, the code ``Object.prototype.hi = ++x.hi;will create a property for the object
x` itself and then `Object.keys(x)` gives us the array `["hi"]`.
Yet, if you run console.log(x.hasOwnProperty("hi"))
it still returns false
. By the way, when you deliberately add a property for x such as x.test = "testing"
, then console.log(x.hasOwnProperty("test"))
returns true
.
const array = (a) => {
let length = a.length;
delete a[length - 1];
return a.length;
};
console.log(array([1, 2, 3, 4]));
const object = (obj) => {
let key = Object.keys(obj);
let length = key.length;
delete obj[key[length - 1]];
return Object.keys(obj).length;
};
console.log(object({ 1: 2, 2: 3, 3: 4, 4: 5 }));
const setPropNull = (obj) => {
let key = Object.keys(obj);
let length = key.length;
obj[key[length - 1]] = null;
return Object.keys(obj).length;
};
console.log(setPropNull({ 1: 2, 2: 3, 3: 4, 4: 5 }));
This question examines how the delete
operator works in JavaScript. In short, it does nothing when we write delete someObject
or delete someArray
. It nonetheless completely deletes and removes a property of an object when writing something like delete someObject.someProperty
. In the case of array, when we write delete someArray[keyNumber]
, it only removes the value
of the index
, keep the index
intact and the new value
is now set to undefined
. For that reason, in the code first snippet, we get (the length) 4 elements as in the original array but only 3 properties left in the object passed when the function object() is called, as in the second snippet.
The third snippet gives us 4 as declaring an object's propery to either null
or undefined
does not completely remove the property. The key is intact. So the length of the object is immutable.
For those who are familiar with PHP, we have unset($someArray[index])
that remove the array element, both key and value. When print_r
the array, we might not see the key and value that have been unset. However, when we push (using array_push($someArray, $someValue)
) a new element in that array, we might see that the previous key is still kept, but no value and not being displayed. That is something you should be aware of. Have a look at https://3v4l.org/7C3Nf
var a = [1, 2, 3];
var b = [1, 2, 3];
var c = [1, 2, 3];
var d = c;
var e = [1, 2, 3];
var f = e.slice();
console.log(a === b);
console.log(c === d);
console.log(e === f);
a
and b
returns false because they point to different memory location even though the values are the same. If you are coming from PHP world, then it will return true obviously when we compare either value or value + type. Check it out: https://3v4l.org/IjaOs.
In JavaScript, value is passed by reference in case of array
and object
. Hence in the second case, d
is the copy of c
but they both point to the same memory position. Everything changes in c
will result in the change in d
. In PHP, we might have $a = &$b;
, working in the similar way.
The third one gives us a hint to copy an array in JavaScript using slice()
method. Now we have f
, which is the copy of e
but they point to different memory locations, thus they have different "life". We get false
accordingly when they are being compared.
var languages = {
name: ["elixir", "golang", "js", "php", { name: "feature" }],
feature: "awesome",
};
let flag = languages.hasOwnProperty(Object.values(languages)[0][4].name);
(() => {
if (flag !== false) {
console.log(
Object.getOwnPropertyNames(languages)[0].length <<
Object.keys(languages)[0].length
);
} else {
console.log(
Object.getOwnPropertyNames(languages)[1].length <<
Object.keys(languages)[1].length
);
}
})();
The code snippet is quite tricky as it has a couple of different built-in methods handling object in JavaScript
. For example, both Object.keys
and Object.getOwnPropertyNames
are used even thought they are quite similar except that the latter can return non-enumerable properties. You might want to have a look at this thoroughly written reference https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyNames
Object.values
and Object.keys
return the property value and property name of the object, respectively. That is nothing new. object.hasOwnProperty('propertyName')
returns a boolean
confirming whether a property exists or not.
We have flag
true because Object.values(languages)[0][4].name
returns feature
, which is also the name of the property.
Then we have 4 << 4 in the if-else
flow that returns the bitwise value, equivalent to 4*2^4
~ 4*16
~ 64.
var player = {
name: "Ronaldo",
age: 34,
getAge: function () {
return ++this.age - this.name.length;
},
};
function score(greeting, year) {
console.log(
greeting + " " + this.name + `! You were born in ${year - this.getAge()}`
);
}
window.window.window.score.call(window.