memoryjs
is a an NPM package to read and write process memory!
Features • Getting Started • Usage • Documentation • Debug
TODO:
This is a Node add-on (last tested to be working on v14.15.0
) and therefore requires node-gyp to use.
You may also need to follow these steps to install and setup node-gyp
.
npm install memoryjs
When using memoryjs, the target process should match the platform architecture of the Node version running. For example if you want to target a 64 bit process, you should try and use a 64 bit version of Node.
You also need to recompile the library and target the platform you want. Head to the memoryjs node module directory, open up a terminal and run one of the following compile scripts:
# will automatically compile based on the detected Node architecture
npm run build
# compile to target 32 bit processes
npm run build32
# compile to target 64 bit processes
npm run build64
If you are planning to use this module with Node Webkit or Electron, take a look at Liam Mitchell's build notes here.
const memoryjs = require('memoryjs');
const processName = "csgo.exe";
// sync: open a process
const processObject = memoryjs.openProcess(processName);
// async: open a process
memoryjs.openProcess(processName, (error, processObject) => {});
// sync: get all processes
const processes = memoryjs.getProcesses();
// async: get all processes
memoryjs.getProcesses((error, processes) => {});
// close a process (release handle)
memoryjs.closeHandle(handle);
See the Documentation section of this README to see what a process object looks like.
// sync: find a module
const moduleObject = memoryjs.findModule(moduleName, processId);
// async: find a module
memoryjs.findModule(moduleName, processId, (error, moduleObject) => {});
// sync: get all modules
const modules = memoryjs.getModules(processId);
// async: get all modules
memoryjs.getModules(processId, (error, modules) => {});
See the Documentation section of this README to see what a module object looks like.
// sync: read data type from memory
const value = memoryjs.readMemory(handle, address, dataType);
// async: read data type from memory
memoryjs.readMemory(handle, address, dataType, (error, value) => {});
// sync: read buffer from memory
const buffer = memoryjs.readBuffer(handle, address, size);
// async: read buffer from memory
memoryjs.readBuffer(handle, address, size, (error, buffer) => {});
// sync: write data type to memory
memoryjs.writeMemory(handle, address, value, dataType);
// sync: write buffer to memory
memoryjs.writeBuffer(handle, address, buffer);
// sync: fetch memory regions
const regions = memoryjs.getRegions(handle);
// async: fetch memory regions
memoryjs.getRegions(handle, (regions) => {});
See the Documentation section of this README to see what values dataType
can be.
// sync: open a named file mapping object
const fileHandle = memoryjs.openFileMapping(fileName);
// sync: map entire file into a specified process
const baseAddress = memoryjs.mapViewOfFile(processHandle, fileName);
// sync: map portion of a file into a specified process
const baseAddress = memoryjs.mapViewOfFile(processHandle, fileName, offset, viewSize, pageProtection);
// sync: close handle to a file mapping object
const success = memoryjs.closeHandle(fileHandle);
See the Documentation section of this README to see details on the parameters and return values for these functions.
// sync: change/set the protection on a region of memory
const oldProtection = memoryjs.virtualProtectEx(handle, address, size, protection);
See the Documentation section of this README to see what values protection
can be.
// sync: pattern scan all modules and memory regions
const address = memoryjs.findPattern(handle, pattern, flags, patternOffset);
// async: pattern scan all modules and memory regions
memoryjs.findPattern(handle, pattern, flags, patternOffset, (error, address) => {});
// sync: pattern scan a given module
const address = memoryjs.findPattern(handle, moduleName, pattern, flags, patternOffset);
// async: pattern scan a given module
memoryjs.findPattern(handle, moduleName, pattern, flags, patternOffset, (error, address) => {});
// sync: pattern scan a memory region or module at the given base address
const address = memoryjs.findPattern(handle, baseAddress, pattern, flags, patternOffset);
// async: pattern scan a memory region or module at the given base address
memoryjs.findPattern(handle, baseAddress, pattern, flags, patternOffset, (error, address) => {});
// sync: execute a function in a remote process
const result = memoryjs.callFunction(handle, args, returnType, address);
// async: execute a function in a remote process
memoryjs.callFunction(handle, args, returnType, address, (error, result) => {});
Click here to see what a result object looks like.
Click here for details about how to format the arguments and the return type.
// sync: inject a DLL
const success = memoryjs.injectDll(handle, dllPath);
// async: inject a DLL
memoryjs.injectDll(handle, dllPath, (error, success) => {});
// sync: unload a DLL by module base address
const success = memoryjs.unloadDll(handle, moduleBaseAddress);
// async: unload a DLL by module base address
memoryjs.unloadDll(handle, moduleBaseAddress, (error, success) => {});
// sync: unload a DLL by module name
const success = memoryjs.unloadDll(handle, moduleName);
// async: unload a DLL by module name
memoryjs.unloadDll(handle, moduleName, (error, success) => {});
// sync: attach debugger
const success = memoryjs.attachDebugger(processId, exitOnDetach);
// sync: detach debugger
const success = memoryjs.detachDebugger(processId);
// sync: wait for debug event
const success = memoryjs.awaitDebugEvent(hardwareRegister, millisTimeout);
// sync: handle debug event
const success = memoryjs.handleDebugEvent(processId, threadId);
// sync: set hardware breakpoint
const success = memoryjs.setHardwareBreakpoint(processId, address, hardwareRegister, trigger, length);
// sync: remove hardware breakpoint
const success = memoryjs.removeHardwareBreakpoint(processId, hardwareRegister);
Note: this documentation is currently being updated, refer to the Wiki for more information.
{ dwSize: 304,
th32ProcessID: 10316,
cntThreads: 47,
th32ParentProcessID: 7804,
pcPriClassBase: 8,
szExeFile: "csgo.exe",
modBaseAddr: 1673789440,
handle: 808 }
The handle
and modBaseAddr
properties are only available when opening a process and not when listing processes.
{ modBaseAddr: 468123648,
modBaseSize: 80302080,
szExePath: 'c:\program files (x86)\steam\steamapps\common\counter-strike global offensive\csgo\bin\client.dll',
szModule: 'client.dll',
th32ProcessID: 10316,
GlblcntUsage: 2 }
{ returnValue: 1.23,
exitCode: 2 }
This object is returned when a function is executed in a remote process:
returnValue
is the value returned from the function that was calledexitCode
is the termination status of the threadWhen using the write or read functions, the data type (dataType) parameter should reference a constant from within the library:
Constant | Bytes | Aliases | Range |
---|---|---|---|
memoryjs.BOOL |
1 | memoryjs.BOOLEAN |
0 to 1 |
memoryjs.INT8 |
1 | memoryjs.BYTE , memoryjs.CHAR |
-128 to 127 |
memoryjs.UINT8 |
1 | memoryjs.UBYTE , memoryjs.UCHAR |
0 to 255 |
memoryjs.INT16 |
2 | memoryjs.SHORT |
-32,768 to 32,767 |
memoryjs.UINT16 |
2 | memoryjs.USHORT , memoryjs.WORD |
0 to 65,535 |
memoryjs.INT32 |
4 | memoryjs.INT , memoryjs.LONG |
-2,147,483,648 to 2,147,483,647 |
memoryjs.UINT32 |
4 | memoryjs.UINT , memoryjs.ULONG , memoryjs.DWORD |
0 to 4,294,967,295 |
memoryjs.INT64 |
8 | n/a | -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 |
memoryjs.UINT64 |
8 | n/a | 0 to 18,446,744,073,709,551,615 |
memoryjs.FLOAT |
4 | n/a | 3.4E +/- 38 (7 digits) |
memoryjs.DOUBLE |
8 | n/a | 1.7E +/- 308 (15 digits) |
memoryjs.PTR |
4/8 | memoryjs.POINTER |
n/a |
memoryjs.UPTR |
4/8 | memoryjs.UPOINTER |
n/a |
memoryjs.STR |
n/a | memoryjs.STRING |
n/a |
memoryjs.VEC3 |
12 | memoryjs.VECTOR3 |
n/a |
memoryjs.VEC4 |
16 | memoryjs.VECTOR4 |
n/a |
Notes:
_BE
to the data type. For example: memoryjs.DOUBLE_BE
.INT64
, UINT64
, INT64_BE
, UINT64_BE
) you will need to supply a BigInt. When reading a 64 bit integer, you will receive a BigInt.These data types are to used to denote the type of data being read or written.
64 bit integer example:
const value = memoryjs.readMemory(handle, address, memoryjs.INT64);
console.log(typeof value); // bigint
memoryjs.writeMemory(handle, address, value + 1n, memoryjs.INT64);
Vector3 is a data structure of three floats:
const vector3 = { x: 0.0, y: 0.0, z: 0.0 };
memoryjs.writeMemory(handle, address, vector3, memoryjs.VEC3);
Vector4 is a data structure of four floats:
const vector4 = { w: 0.0, x: 0.0, y: 0.0, z: 0.0 };
memoryjs.writeMemory(handle, address, vector4, memoryjs.VEC4);
If you have a structure you want to write to memory, you can use buffers. For an example on how to do this, view the buffers example.
To write/read a structure to/from memory, you can use structron to define your structures and use them to write or parse buffers.
If you want to read a std::string
using structron
, the library exposes a custom type that can be used to read/write strings:
// To create the type, we need to pass the process handle, base address of the
// structure, and the target process architecture (either "32" or "64").
const stringType = memoryjs.STRUCTRON_TYPE_STRING(processObject.handle, structAddress, '64');
// Create a custom structure using the custom type, full example in /examples/buffers.js
const Struct = require('structron');
const Player = new Struct()
.addMember(string, 'name');
Alternatively, you can use the concentrate and dissolve libraries to achieve the same thing. An old example of this is here.
Protection type is a bit flag DWORD value.
This parameter should reference a constant from the library:
memoryjs.PAGE_NOACCESS, memoryjs.PAGE_READONLY, memoryjs.PAGE_READWRITE, memoryjs.PAGE_WRITECOPY, memoryjs.PAGE_EXECUTE, memoryjs.PAGE_EXECUTE_READ, memoryjs.PAGE_EXECUTE_READWRITE, memoryjs.PAGE_EXECUTE_WRITECOPY, memoryjs.PAGE_GUARD, memoryjs.PAGE_NOCACHE, memoryjs.PAGE_WRITECOMBINE, memoryjs.PAGE_ENCLAVE_THREAD_CONTROL, memoryjs.PAGE_TARGETS_NO_UPDATE, memoryjs.PAGE_TARGETS_INVALID, memoryjs.PAGE_ENCLAVE_UNVALIDATED
Refer to MSDN's Memory Protection Constants for more information.
Memory allocation type is a bit flag DWORD value.
This parameter should reference a constat from the library:
memoryjs.MEM_COMMIT, memoryjs.MEM_RESERVE, memoryjs.MEM_RESET, memoryjs.MEM_RESET_UNDO
Refer to MSDN's VirtualAllocEx documentation for more information.
You can use this library to read either a "string", or "char*" and to write a string.
In both cases you want to get the address of the char array:
std::string str1 = "hello";
std::cout << "Address: 0x" << hex << (DWORD) str1.c_str() << dec << std::endl;
char* str2 = "hello";
std::cout << "Address: 0x" << hex << (DWORD) str2 << dec << std::endl;
From here you can simply use this address to write and read memory.
There is one caveat when reading a string in memory however, due to the fact that the library does not know how long the string is, it will continue reading until it finds the first null-terminator. To prevent an infinite loop, it will stop reading if it has not found a null-terminator after 1 million characters.
One way to bypass this limitation in the future would be to allow a parameter to let users set the maximum character count.
When pattern scanning, flags need to be raised for the signature types. The signature type parameter needs to be one of the following:
0x0
or memoryjs.NORMAL
which denotes a normal signature.
0x1
or memoryjs.READ
which will read the memory at the address.
0x2
or memoryjs.SUBSTRACT
which will subtract the image base from the address.
To raise multiple flags, use the bitwise OR operator: memoryjs.READ | memoryjs.SUBTRACT
.
The library exposes functions to map obtain a handle to and read a memory mapped file.
openFileMapping(fileName)
Refer to MSDN's OpenFileMappingA documentation for more information.
mapViewOfFile(processHandle, fileName)
memoryjs.openFileMapping
constants.PAGE_READONLY
.mapViewOfFile(processHandle, fileName, offset, viewSize, pageProtection)
memoryjs.openFileMapping
number
or bigint
): the offset from the beginning of the file (has to be multiple of 64KB)number
or bigint
): the number of bytes to map (if 0
, the entire file will be read, regardless of offset)Refer to MSDN's MapViewOfFile2 documentation for more information.
See Protection Type for page protection types.
We have a process that creates a file mapping:
HANDLE fileHandle = CreateFileA("C:\foo.txt", GENERIC_READ, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
HANDLE fileMappingHandle = CreateFileMappingA(fileHandle, NULL, PAGE_READONLY, 0, 0, "MappedFooFile");
We can map the file to a specified target process and read the file with memoryjs
:
const processObject = memoryjs.openProcess("example.exe");
const fileHandle = memoryjs.openFileMapping("MappedFooFile");
// read entire file
const baseAddress = memoryjs.mapViewOfFile(processObject.handle, fileHandle.handle);
const data = memoryjs.readMemory(processObject.handle, baseAddress, memoryjs.STR);
// read 10 bytes after 64KB
const baseAddress = memoryjs.mapViewOfFile(processObject.handle, fileHandle.handle, 65536, 10, constants.PAGE_READONLY);
const buffer = memoryjs.readBuffer(processObject.handle, baseAddress, 10);
const data = buffer.toString();
const success = memoryjs.closeHandle(fileHandle);
If you want to read a memory mapped file without having a target process to map the file to, you can map it to the current Node process with global variable process.pid
:
const processObject = memoryjs.openProcess(process.pid);
Remote function execution works by building an array of arguments and dynamically generating shellcode that is injected into the target process and executed, for this reason crashes may occur.
To call a function in a process, the callFunction
function can be used. The library supports passing arguments to the function and need to be in the following format:
[{ type: T_INT, value: 4 }]
The library expects the arguments to be an array of objects where each object has a type
which denotes the data type of the argument, and a value
which is the actual value of the argument. The various supported data types can be found below.
memoryjs.T_VOID = 0x0,
memoryjs.T_STRING = 0x1,
memoryjs.T_CHAR = 0x2,
memoryjs.T_BOOL = 0x3,
memoryjs.T_INT = 0x4,
memoryjs.T_DOUBLE = 0x5,
memoryjs.T_FLOAT = 0x6,
When using callFunction
, you also need to supply the return type of the function, which again needs to be one of the above values.
For example, given the following C++ function:
int add(int a, int b) {
return a + b;
}
You would call this function as so:
const args = [{
type: memoryjs.T_INT,
value: 2,
}, {
type: memoryjs.T_INT,
value: 5,
}];
const returnType = T_INT;
> memoryjs.callFunction(handle, args, returnType, address);
{ returnValue: 7, exitCode: 7 }
See the result object documentation for details on what callFunction
returns.
Notes: currently passing a double
as an argument is not supported, but returning one is.
Much thanks to the various contributors that made this feature possible.
Hardware breakpoints work by attaching a debugger to the process, setting a breakpoint on a certain address and declaring a trigger type (e.g. breakpoint on writing to the address) and then continuously waiting for a debug event to arise (and then consequently handling it).
This library exposes the main functions, but also includes a wrapper class to simplify the process. For a complete code example, checkout our debugging example.
When setting a breakpoint, you are required to pass a trigger type:
memoryjs.TRIGGER_ACCESS
- breakpoint occurs when the address is accessedmemoryjs.TRIGGER_WRITE
- breakpoint occurs when the address is written toDo note that when monitoring an address containing a string, the size
parameter of the setHardwareBreakpoint
function should be the length of the string. When using the Debugger
wrapper class, the wrapper will automatically determine the size of the string by attempting to read it.
To summarise:
When using the Debugger
class:
size
parameter to setHardwareBreakpoint
setHardwareBreakpoint
returns the register that was used for the breakpointWhen manually using the debugger functions:
size
parameter is the size of the variable in memory (e.g. int32 = 4 bytes). For a string, this parameter is the length of the stringmemoryjs.DR0
through memoryhs.DR3
). Only 4 hardware registers are available (some CPUs may even has less than 4 available). This means only 4 breakpoints can be set at any given timesetHardwareBreakpoint
returns a boolean stating whether the operation as successfulFor more reading about debugging and hardware breakpoints, checkout the following links:
The Debugger wrapper contains these functions you should use:
class Debugger {
attach(processId, killOnDetach = false);
detach(processId);
setHardwareBreakpoint(processId, address, trigger, dataType);
removeHardwareBreakpoint(processId, register);
}
const hardwareDebugger = memoryjs.Debugger;
hardwareDebugger.attach(processId);
const address = 0xDEADBEEF;
const trigger = memoryjs.TRIGGER_ACCESS;
const dataType = memoryjs.INT;
const register = hardwareDebugger.setHardwareBreakpoint(processId, address, trigger, dataType);
// `debugEvent` event emission catches debug events from all registers
hardwareDebugger.on('debugEvent', ({ register, event }) => {
console.log(`Hardware Register ${register} breakpoint`);
console.log(event);
});
// You can listen to debug events from specific hardware registers
// by listening to whatever register was returned from `setHardwareBreakpoint`
hardwareDebugger.on(register, (event) => {
console.log(event);
});
const hardwareDebugger = memoryjs.Debugger;
hardwareDebugger.attach(processId);
// available registers: DR0 through DR3
const register = memoryjs.DR0;
// int = 4 bytes
const size = 4;
const address = 0xDEADBEEF;
const trigger = memoryjs.TRIGGER_ACCESS;
const dataType = memoryjs.INT;
const success = memoryjs.setHardwareBreakpoint(processId, address, register, trigger, size);
const timeout = 100;
setInterval(() => {
// `debugEvent` can be null if no event occurred
const debugEvent = memoryjs.awaitDebugEvent(register, timeout);
// If a breakpoint occurred, handle it
if (debugEvent) {
memoryjs.handleDebugEvent(debugEvent.processId, debugEvent.threadId);
}
}, timeout);
Note: a loop is not required, e.g. no loop required if you want to simply wait until the first detection of the address being accessed or written to.
Go to the root directory of the module and run one of the following commands:
# will automatically compile based on the detected Node architecture
npm run debug
# compile to target 32 bit processes
npm run debug32
# compile to target 64 bit processes
npm run debug64
index.js
file to require the debug moduleGo to the root directory and change the line in index.js
from:
const memoryjs = require('./build/Release/memoryjs');
To the following:
const memoryjs = require('./build/Debug/memoryjs');
Open the binding.sln
solution in Visual Studio, found in the build
folder in the project's root directory.
node.exe
file (e.g. C:nodejsnode.exe
)C:projecttest.js
)Explore the project files in Visual Studio (by expanding ..
and then lib
in the Solution Explorer). Header files can be viewed by holding Alt
and clicking on the header file names at the top of the source code files.
Breakpoints are set by clicking to the left of the line number.
Start debugging by either pressing F5
, by clicking "Debug" in the toolbar and then "Start Debugging", or by clicking "Local Windows Debugger".
The script you've set as the command argument in step 4 will be run, and Visual Studio will pause on the breakpoints set and allow you to step through the code line by line and inspect variables.