ReturnVisitRobot
1.0.0
This is an outbound call robot used for insurance return visits. Only the core text robot part is retained in this project. The core functional process is as follows:
This project rewrites the dialogue response strategy based on finite state machines based on rasa. It should have some reference significance for friends who want to build text robots.
Configuration, you can modify the pipeline in the confg.yml file. For the specific configuration method of the pipeline, please refer to the Rasa official website https://rasa.com/docs/rasa/model-configuration
The following is a configuration example of two custom components:
Memory-Based Dialogue Response Strategies
policies:
- name: policy.memoization.MemoizationPolicy
- name: TEDPolicy
max_history: 20
epochs: 15
batch_size: 50
- name: RulePolicy
core_fallback_threshold: 0.3
enable_fallback_prediction: True
core_fallback_action_name: "action_default_fallback"
Or based on finite state machine (FSM)
policies:
- name: policy.fsm_policy.FsmPolicy
- name: TEDPolicy
max_history: 20
epochs: 15
batch_size: 50
- name: RulePolicy
core_fallback_threshold: 0.3
enable_fallback_prediction: True
core_fallback_action_name: "action_default_fallback"
train
python main.py train
run
#开启动作响应服务器,默认5055端口
python main.py run actions
#开启对话shell,如果使用pycharm注意勾选emulate terminal
python main.py shell
#第一句请输入内置意图:开始
Your input:开始
six~=1.16.0
rasa~=3.1.0
zlib~=1.2.12
tqdm~=4.64.0
pip install -r requirements.txt
rasa run -m xx.tar.gz(模型文件) -p 8787(端口号)