Slint is a declarative GUI toolkit to build native user interfaces for embedded, desktop, and mobile applications written in Rust, C++, JavaScript, or Python.
The name Slint is derived from our design goals:
Visit #MadeWithSlint to view some of the projects using Slint. We invite you to use Slint and be part of its community.
Slint is in active development. The state of support for each platform is as follows:
Slint supports keyboard based navigation of many widgets, and user interfaces are scalable. The basic infrastructure for assistive technology like screen readers is in place. We're aware that more work is needed to get best-of-class support for users with special needs.
RaspberryPi | STM32 | RP2040 |
---|---|---|
Video of Slint on Raspberry Pi | Video of Slint on STM32 | Video of Slint on RP2040 |
Windows | macOS | Linux |
---|---|---|
Printer Demo | Slide Puzzle | Energy Monitor | Widget Gallery | Weather demo |
---|---|---|---|---|
More examples and demos in the examples folder
The UI is defined in a Domain Specific Language that is declarative, easy to use, intuitive, and provides a powerful way to describe graphical elements, their placement, their hierarchy, property bindings, and the flow of data through the different states.
Here's the obligatory "Hello World":
export component HelloWorld inherits Window {
width: 400px;
height: 400px;
Text {
y: parent.width / 2;
x: parent.x + 200px;
text: "Hello, world";
color: blue;
}
}
For more details, check out the Slint Language Documentation.
The examples folder contains examples and demos, showing how to use the Slint markup language and how to interact with a Slint user interface from supported programming languages.
The docs
folder contains a lot more information, including
build instructions, and
internal developer docs.
Refer to the README of each language directory in the api
folder:
An application is composed of the business logic written in Rust, C++, or
JavaScript and the .slint
user interface design markup, which is compiled to
native code.
The .slint
files are compiled ahead of time. The expressions in the .slint
are pure functions that the compiler can optimize. For example, the compiler
could choose to "inline" properties and remove those that are constant or
unchanged. In the future we hope to improve rendering time on low end devices by
pre-processing images and text. The compiler could determine that a Text
or an
Image
element is always on top of another Image
in the same location.
Consequently both elements could be rendered ahead of time into a single
element, thus cutting down on rendering time.
The compiler uses the typical compiler phases of lexing, parsing, optimization, and finally code generation. It provides different back-ends for code generation in the target language. The C++ code generator produces a C++ header file, the Rust generator produces Rust code, and so on. An interpreter for dynamic languages is also included.
The runtime library consists of an engine that supports properties declared in
the .slint
language. Components with their elements, items, and properties are
laid out in a single memory region, to reduce memory allocations.
Rendering backends and styles are configurable at compile time:
femtovg
renderer uses OpenGL ES 2.0 for rendering.skia
renderer uses Skia for rendering.software
renderer uses the CPU with no additional dependencies.NOTE: When Qt is installed on the system, the qt
style becomes available,
using Qt's QStyle to achieve native looking widgets.
We have a few tools to help with the development of .slint files:
--auto-reload
argument makes it easy to preview your UI while you are
working on it (when using the LSP preview is not possible).Please check our Editors README for tips on how to configure your favorite editor to work well with Slint.
You can use Slint under any of the following licenses, at your choice:
See the Slint licensing options on the website and the Licensing FAQ.
We welcome your contributions: in the form of code, bug reports or feedback.
Please see our separate FAQ.
We are passionate about software - API design, cross-platform software development and user interface components. Our aim is to make developing user interfaces fun for everyone: from Python, JavaScript, C++, or Rust developers all the way to UI/UX designers. We believe that software grows organically and keeping it open source is the best way to sustain that growth. Our team members are located remotely in Germany.
Feel free to join Github discussions for general chat or questions. Use Github issues to report public suggestions or bugs.
We chat in our Mattermost instance where you are welcome to listen in or ask your questions.
You can of course also contact us privately via email to [email protected].