This repository builds a thin python wrapper around OpenCCG using the GUM-space ontology, ready to run inside a docker container. You can find a live version at litmus.informatik.uni-bremen.de/openccg.
After an initial docker-compose up
, the service can be queried using a simple POST request, e.g. using curl:
$ curl --data "Take the cup." "localhost/openccg/parse?graphs"
{"version": "2.2.0", "application": "web-openccg", "uuid": "3bafdaf8-cc9c-4fdf-b455-c9687babba49", "sentence": "take the cup", "parses": ..., "http_status": 200, "json_parses": ..., "graphs": ...}
The "graphs" field is only included if the graphs
URL-parameter is present.
As an example, using Python requests:
import requests
# Without graphs
print(requests.post('http://localhost/openccg/parse', data={'sentence': 'Take the cup.'}).json())
# With graphs
print(requests.post('http://localhost/openccg/parse',
data={'sentence': 'Take the cup.'},
params={'graphs': True}).json())
Due to the way we host OpenCCG behind nginx at litmus, the URLs for web-openccg are all prefixed with "openccg".
However, for the two important endpoints (/
for the GUI and /parse
for the API), there are redirects in place.
For curl this means curl -L --data "Take the cup." localhost/parse
will also work (note the -L
(--location
) argument).
Note that is is not production ready, as it is really slow and not optimized: Instead of keeping one (or multiple) instances of OpenCCG running to query them faster, each request spawns an individual OpenCCG instance.
To query the service visually, just open your browser at http://localhost/openccg. Otherwise, use curl, wget, or e.g. python requests to query web-openccg via the command line or your application.
If your client allows to build your request body manually, like curl, just put the sentence inside:
curl --data "Take the cup." localhost/openccg/parse
However, many high level frameworks like python requests usually use a
key-value mechanism for post data. In this case, use the key sentence
:
requests.post('http://localhost/openccg/parse', data={'sentence': 'Take the cup.'})
For an example, see below.
The response is a JSON object and always contains these fields:
version
: The JSON object version.application
: Always "web-openccg", this is useful if you aggregate parses from different services.uuid
: A unique ID for this response. This will only be useful if you plan to integrate the tool somehow.http_status
: The HTTP status from the request.If a sentence was provided during the request, these fields are present:
sentence
: The cleaned input sentence (all lowercase, punctuation removed, ...).If at least one successful parse exists, the these fields are included:
parses
: A dictionary of parse-identifiers (e.g. "np") to actual parses as OpenCCG outputs them.json_parses
: A version of the OpenCCG outputs in a flat JSON. This is produced via a custom grammar for TatSu. For details see below. Each individual dictionary value is a list of Nominals, Variables, and/or Roles.graphs
: A dictionary of parse-identifiers to dot-strings. They can be rendered using graphviz -- the online GUI renders these automatically.Note: The keys are shared between parses
, json_parses
, and graphs
, thus you can easily lookup the original output for a JSON parse and vice-versa.
If an error occurs, the error field is present:
error
: An error description.Current version: 2.3.0
The JSON format for the OpenCCG parses can be determined from the example above or by carefully inspecting the fully typed OpenCCG.ebnf.
There are three different types of objects: Nominal, Variable, and Role. The full semantic specification (the JSON file) can either be one single entity of any of the three types or a list of Nominals. If we find parses which are lists of variables or roles, the grammar will be extended. Please open an issue if you find sentences which can not be parsed correctly.
A nominal is like a special variable, it describes the "main theme" of the sentence. Since they are practically the same (they actually have very similar parsing rules), the JSON format represents them with an identical structure:
{
"__class__": "Variable",
"name": "x1",
"type": "gum-OrientationChange",
"roles": []
}
__class__
is either Variable
or Nominal
.name
is the variable named used by OpenCCG, it is a letter followed by a number, for example x1
or w12
.type
is a GUM specifier denoting the type of the variable. It can also be null
, if the type is not specified.roles
is a list of roles as described below.A Role defines all properties a Variable or Nominal can have. It follows a very similar structure:
{
"__class__": "Role",
"type": "quant",
"target": ...
}
__class__
: Role
.type
: The role type. This determines the target
possibilities.target
: The value of the role. This can be multiple different things, see below.If the type is entity
, the target will be an instance, like "cup" or "slm-Taking".
If the type has a prefix followed by a dash, e.g. gs-hasSpatialModality
or gs-direction
, then the target will be a Variable
; in owl this would be an ObjectProperty.
If the type is any other string, the target will be an atomic string, e.g. the type det
can have the target the
, while the type quant
can have the target singular
.
Most web services use port 80 as a default port, and so does web-openccg.
To change the port, adjust the docker-compose file and change the port line
from "80:80"
to your port on the left side (but keep the 80 on the right), so
for example to set up the service on Port 9043, you would change it to
"9043:80"
.
Before starting development, you need to build the docker container using:
make build
This step also includes some files downloaded during the build process into your local ./webopenccg/static directory. The copies are done because the development server mounts the directory, which overwrites the files which are only available inside the container but not on the host system.
To start the development docker container, use the Makefile:
make run
The development server binds to port 5000 and uses the
flask debug environment. Additionally, the docker
container started with make run
binds the app directory
so that flask's reloading works properly.
To compile the OpenCCG.ebnf grammar, run:
make
An example response for the sentence "Take the cup." is:
{
"version": "2.2.0",
"application": "web-openccg",
"uuid": "ecae8222-af9b-4185-a508-efa8be33c7e6",
"sentence": "take the cup",
"parses": {
"smain": "@x1:gum-OrientationChange( <mood>imp ^ <gs-direction>(x2:gs-GeneralizedLocation ^ <gs-hasSpatialModality>(w2:slm-Cup ^ cup ^ <det>the ^ <ident>specific ^ <quant>singular)) ^ <gum-processInConfiguration>(w0:slm-Moving ^ slm-Taking))",
"smain/0": "@x1:gum-OrientationChange( <mood>imp ^ <gs-direction>(x2:gs-GeneralizedLocation ^ <gs-hasSpatialModality>(w2:slm-Cup ^ cup ^ <det>the ^ <ident>specific ^ <quant>singular)) ^ <gum-processInConfiguration>(w0:slm-Taking ^ slm-Taking))",
"smain/.r": "@x1:gs-AffectingDirectedMotion( <mood>imperative ^ <gs-route>x2 ^ <gum-actee>(w2:slm-Cup ^ cup ^ <det>the ^ <ident>specific ^ <quant>singular) ^ <gum-processInConfiguration>(w0:slm-Moving ^ slm-Taking))",
"smain/.r/0": "@x1:gs-AffectingDirectedMotion( <mood>imperative ^ <gs-route>x2 ^ <gum-actee>(w2:slm-Cup ^ cup ^ <det>the ^ <ident>specific ^ <quant>singular) ^ <gum-processInConfiguration>(w0:slm-Taking ^ slm-Taking))"
},
"http_status": 200,
"json_parses": {
"smain": {
"__class__": "Nominal",
"type": "gum-OrientationChange",
"name": "x1",
"roles": [
{
"__class__": "Role",
"type": "mood",
"target": "imp"
},
{
"__class__": "Role",
"type": "gs-direction",
"target": {
"__class__": "Variable",
"type": "gs-GeneralizedLocation",
"name": "x2",
"roles": [
{
"__class__": "Role",
"type": "gs-hasSpatialModality",
"target": {
"__class__": "Variable",
"type": "slm-Cup",
"name": "w2",
"roles": [
{
"__class__": "Role",
"type": "entity",
"target": "cup"
},
{
"__class__": "Role",
"type": "det",
"target": "the"
},
{
"__class__": "Role",
"type": "ident",
"target": "specific"
},
{
"__class__": "Role",
"type": "quant",
"target": "singular"
}
]
}
}
]
}
},
{
"__class__": "Role",
"type": "gum-processInConfiguration",
"target": {
"__class__": "Variable",
"type": "slm-Moving",
"name": "w0",
"roles": [
{
"__class__": "Role",
"type": "entity",
"target": "slm-Taking"
}
]
}
}
]
},
"smain/0": {
"__class__": "Nominal",
"type": "gum-OrientationChange",
"name": "x1",
"roles": [
{
"__class__": "Role",
"type": "mood",
"target": "imp"
},
{
"__class__": "Role",
"type": "gs-direction",
"target": {
"__class__": "Variable",
"type": "gs-GeneralizedLocation",
"name": "x2",
"roles": [
{
"__class__": "Role",
"type": "gs-hasSpatialModality",
"target": {
"__class__": "Variable",
"type": "slm-Cup",
"name": "w2",
"roles": [
{
"__class__": "Role",
"type": "entity",
"target": "cup"
},
{
"__class__": "Role",
"type": "det",
"target": "the"
},
{
"__class__": "Role",
"type": "ident",
"target": "specific"
},
{
"__class__": "Role",
"type": "quant",
"target": "singular"
}
]
}
}
]
}
},
{
"__class__": "Role",
"type": "gum-processInConfiguration",
"target": {
"__class__": "Variable",
"type": "slm-Taking",
"name": "w0",
"roles": [
{
"__class__": "Role",
"type": "entity",
"target": "slm-Taking"
}
]
}
}
]
},
"smain/.r": {
"__class__": "Nominal",
"type": "gs-AffectingDirectedMotion",
"name": "x1",
"roles": [
{
"__class__": "Role",
"type": "mood",
"target": "imperative"
},
{
"__class__": "Role",
"type": "gs-route",
"target": {
"__class__": "Variable",
"type": null,
"name": "x2",
"roles": [
{
"__class__": "Role",
"type": "gum-actee",
"target": {
"__class__": "Variable",
"type": "slm-Cup",
"name": "w2",
"roles": [
{
"__class__": "Role",
"type": "entity",
"target": "cup"
},
{
"__class__": "Role",
"type": "det",
"target": "the"
},
{
"__class__": "Role",
"type": "ident",
"target": "specific"
},
{
"__class__": "Role",
"type": "quant",
"target": "singular"
}
]
}
},
{
"__class__": "Role",
"type": "gum-processInConfiguration",
"target": {
"__class__": "Variable",
"type": "slm-Moving",
"name": "w0",
"roles": [
{
"__class__": "Role",
"type": "entity",
"target": "slm-Taking"
}
]
}
}
]
}
}
]
},
"smain/.r/0": {
"__class__": "Nominal",
"type": "gs-AffectingDirectedMotion",
"name": "x1",
"roles": [
{
"__class__": "Role",
"type": "mood",
"target": "imperative"
},
{
"__class__": "Role",
"type": "gs-route",
"target": {
"__class__": "Variable",
"type": null,
"name": "x2",
"roles": [
{
"__class__": "Role",
"type": "gum-actee",
"target": {
"__class__": "Variable",
"type": "slm-Cup",
"name": "w2",
"roles": [
{
"__class__": "Role",
"type": "entity",
"target": "cup"
},
{
"__class__": "Role",
"type": "det",
"target": "the"
},
{
"__class__": "Role",
"type": "ident",
"target": "specific"
},
{
"__class__": "Role",
"type": "quant",
"target": "singular"
}
]
}
},
{
"__class__": "Role",
"type": "gum-processInConfiguration",
"target": {
"__class__": "Variable",
"type": "slm-Taking",
"name": "w0",
"roles": [
{
"__class__": "Role",
"type": "entity",
"target": "slm-Taking"
}
]
}
}
]
}
}
]
}
},
"graphs": {
"smain": "strict graph "" {ntnode [label="\N"];ntsubgraph cluster_x1 {nttgraph [fillcolor=lightskyblue,ntttlabel="x1: gum-OrientationChange",ntttstyle=filledntt];nttsubgraph "cluster_gs-direction" {ntttgraph [fillcolor=honeydew,nttttlabel="gs-direction",nttttstyle=fillednttt];ntttsubgraph cluster_x2 {nttttgraph [fillcolor=lightblue,ntttttlabel="x2: gs-GeneralizedLocation",ntttttstyle=filledntttt];nttttsubgraph "cluster_gs-hasSpatialModality" {ntttttgraph [fillcolor=honeydew,nttttttlabel="gs-hasSpatialModality",nttttttstyle=fillednttttt];ntttttsubgraph cluster_w2 {nttttttgraph [fillcolor=lightblue,ntttttttlabel="w2: slm-Cup",ntttttttstyle=filledntttttt];nttttttw2tttttt [fillcolor=aliceblue,ntttttttlabel="{<entity> cup|<det> the|<ident> specific|<quant> singular}",ntttttttshape=Mrecord,ntttttttstyle=filled];nttttt}ntttt}nttt}ntt}nttsubgraph "cluster_gum-processInConfiguration" {ntttgraph [fillcolor=honeydew,nttttlabel="gum-processInConfiguration",nttttstyle=fillednttt];ntttsubgraph cluster_w0 {nttttgraph [fillcolor=lightblue,ntttttlabel="w0: slm-Moving",ntttttstyle=filledntttt];nttttw0tttt [fillcolor=aliceblue,ntttttlabel="{<entity> slm-Taking}",ntttttshape=Mrecord,ntttttstyle=filled];nttt}ntt}nttx1tt [fillcolor=aliceblue,ntttlabel="{<mood> imp}",ntttshape=Mrecord,ntttstyle=filled];nt}n}n",
"smain/0": "strict graph "" {ntnode [label="\N"];ntsubgraph cluster_x1 {nttgraph [fillcolor=lightskyblue,ntttlabel="x1: gum-OrientationChange",ntttstyle=filledntt];nttsubgraph "cluster_gs-direction" {ntttgraph [fillcolor=honeydew,nttttlabel="gs-direction",nttttstyle=fillednttt];ntttsubgraph cluster_x2 {nttttgraph [fillcolor=lightblue,ntttttlabel="x2: gs-GeneralizedLocation",ntttttstyle=filledntttt];nttttsubgraph "cluster_gs-hasSpatialModality" {ntttttgraph [fillcolor=honeydew,nttttttlabel="gs-hasSpatialModality",nttttttstyle=fillednttttt];ntttttsubgraph cluster_w2 {nttttttgraph [fillcolor=lightblue,ntttttttlabel="w2: slm-Cup",ntttttttstyle=filledntttttt];nttttttw2tttttt [fillcolor=aliceblue,ntttttttlabel="{<entity> cup|<det> the|<ident> specific|<quant> singular}",ntttttttshape=Mrecord,ntttttttstyle=filled];nttttt}ntttt}nttt}ntt}nttsubgraph "cluster_gum-processInConfiguration" {ntttgraph [fillcolor=honeydew,nttttlabel="gum-processInConfiguration",nttttstyle=fillednttt];ntttsubgraph cluster_w0 {nttttgraph [fillcolor=lightblue,ntttttlabel="w0: slm-Taking",ntttttstyle=filledntttt];nttttw0tttt [fillcolor=aliceblue,ntttttlabel="{<entity> slm-Taking}",ntttttshape=Mrecord,ntttttstyle=filled];nttt}ntt}nttx1tt [fillcolor=aliceblue,ntttlabel="{<mood> imp}",ntttshape=Mrecord,ntttstyle=filled];nt}n}n",
"smain/.r": "strict graph "" {ntnode [label="\N"];ntsubgraph cluster_x1 {nttgraph [fillcolor=lightskyblue,ntttlabel="x1: gs-AffectingDirectedMotion",ntttstyle=filledntt];nttsubgraph "cluster_gs-route" {ntttgraph [fillcolor=honeydew,nttttlabel="gs-route",nttttstyle=fillednttt];ntttsubgraph cluster_x2 {nttttgraph [fillcolor=lightblue,ntttttlabel=None,ntttttstyle=filledntttt];nttttsubgraph "cluster_gum-actee" {ntttttgraph [fillcolor=honeydew,nttttttlabel="gum-actee",nttttttstyle=fillednttttt];ntttttsubgraph cluster_w2 {nttttttgraph [fillcolor=lightblue,ntttttttlabel="w2: slm-Cup",ntttttttstyle=filledntttttt];nttttttw2tttttt [fillcolor=aliceblue,ntttttttlabel="{<entity> cup|<det> the|<ident> specific|<quant> singular}",ntttttttshape=Mrecord,ntttttttstyle=filled];nttttt}ntttt}nttttsubgraph "cluster_gum-processInConfiguration" {ntttttgraph [fillcolor=honeydew,nttttttlabel="gum-processInConfiguration",nttttttstyle=fillednttttt];ntttttsubgraph cluster_w0 {nttttttgraph [fillcolor=lightblue,ntttttttlabel="w0: slm-Moving",ntttttttstyle=filledntttttt];nttttttw0tttttt [fillcolor=aliceblue,ntttttttlabel="{<entity> slm-Taking}",ntttttttshape=Mrecord,ntttttttstyle=filled];nttttt}ntttt}nttt}ntt}nttx1tt [fillcolor=aliceblue,ntttlabel="{<mood> imperative}",ntttshape=Mrecord,ntttstyle=filled];nt}n}n",
"smain/.r/0": "strict graph "" {ntnode [label="\N"];ntsubgraph cluster_x1 {nttgraph [fillcolor=lightskyblue,ntttlabel="x1: gs-AffectingDirectedMotion",ntttstyle=filledntt];nttsubgraph "cluster_gs-route" {ntttgraph [fillcolor=honeydew,nttttlabel="gs-route",nttttstyle=fillednttt];ntttsubgraph cluster_x2 {nttttgraph [fillcolor=lightblue,ntttttlabel=None,ntttttstyle=filledntttt];nttttsubgraph "cluster_gum-actee" {ntttttgraph [fillcolor=honeydew,nttttttlabel="gum-actee",nttttttstyle=fillednttttt];ntttttsubgraph cluster_w2 {nttttttgraph [fillcolor=lightblue,ntttttttlabel="w2: slm-Cup",ntttttttstyle=filledntttttt];nttttttw2tttttt [fillcolor=aliceblue,ntttttttlabel="{<entity> cup|<det> the|<ident> specific|<quant> singular}",ntttttttshape=Mrecord,ntttttttstyle=filled];nttttt}ntttt}nttttsubgraph "cluster_gum-processInConfiguration" {ntttttgraph [fillcolor=honeydew,nttttttlabel="gum-processInConfiguration",nttttttstyle=fillednttttt];ntttttsubgraph cluster_w0 {nttttttgraph [fillcolor=lightblue,ntttttttlabel="w0: slm-Taking",ntttttttstyle=filledntttttt];nttttttw0tttttt [fillcolor=aliceblue,ntttttttlabel="{<entity> slm-Taking}",ntttttttshape=Mrecord,ntttttttstyle=filled];nttttt}ntttt}nttt}ntt}nttx1tt [fillcolor=aliceblue,ntttlabel="{<mood> imperative}",ntttshape=Mrecord,ntttstyle=filled];nt}n}n"
}
}
Example visualization (only smain shown):