Current language models usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and online serving in real-life applications due to latency and capacity constraints. In this project, we release a light weight korean language model to address the aforementioned shortcomings of existing language models.
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("BM-K/KoMiniLM") # 23M model
model = AutoModel.from_pretrained("BM-K/KoMiniLM")
inputs = tokenizer("안녕 세상아!", return_tensors="pt")
outputs = model(**inputs)
** Updates on 2022.06.20 **
** Updates on 2022.05.24 **
Teacher Model
: KLUE-BERT(base)
Self-Attention Distribution and Self-Attention Value-Relation [Wang et al., 2020] were distilled from each discrete layer of the teacher model to the student model. Wang et al. distilled in the last layer of the transformer, but that was not the case in this project.
Data | News comments | News article |
---|---|---|
size | 10G | 10G |
Note
- Performance can be further improved by adding wiki data to training.
- The crawling and preprocessing code for the News article is here.
{
"architectures": [
"BertForPreTraining"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 384,
"initializer_range": 0.02,
"intermediate_size": 1536,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 6,
"output_attentions": true,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"return_dict": false,
"torch_dtype": "float32",
"transformers_version": "4.13.0",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 32000
}
{
"architectures": [
"BertForPreTraining"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 6,
"output_attentions": true,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"return_dict": false,
"torch_dtype": "float32",
"transformers_version": "4.13.0",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 32000
}
cd KoMiniLM-Finetune
bash scripts/run_all_KoMiniLM.sh
#Param | Average | NSMC (Acc) |
Naver NER (F1) |
PAWS (Acc) |
KorNLI (Acc) |
KorSTS (Spearman) |
Question Pair (Acc) |
KorQuaD (Dev) (EM/F1) |
|
---|---|---|---|---|---|---|---|---|---|
KoBERT(KLUE) | 110M | 86.84 | 90.20±0.07 | 87.11±0.05 | 81.36±0.21 | 81.06±0.33 | 82.47±0.14 | 95.03±0.44 | 84.43±0.18 / 93.05±0.04 |
KcBERT | 108M | 78.94 | 89.60±0.10 | 84.34±0.13 | 67.02±0.42 | 74.17±0.52 | 76.57±0.51 | 93.97±0.27 | 60.87±0.27 / 85.01±0.14 |
KoBERT(SKT) | 92M | 79.73 | 89.28±0.42 | 87.54±0.04 | 80.93±0.91 | 78.18±0.45 | 75.98±2.81 | 94.37±0.31 | 51.94±0.60 / 79.69±0.66 |
DistilKoBERT | 28M | 74.73 | 88.39±0.08 | 84.22±0.01 | 61.74±0.45 | 70.22±0.14 | 72.11±0.27 | 92.65±0.16 | 52.52±0.48 / 76.00±0.71 |
KoMiniLM† | 68M | 85.90 | 89.84±0.02 | 85.98±0.09 | 80.78±0.30 | 79.28±0.17 | 81.00±0.07 | 94.89±0.37 | 83.27±0.08 / 92.08±0.06 |
KoMiniLM† | 23M | 84.79 | 89.67±0.03 | 84.79±0.09 | 78.67±0.45 | 78.10±0.07 | 78.90±0.11 | 94.81±0.12 | 82.11±0.42 / 91.21±0.29 |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.