adeptRL
1.0.0
adept is a reinforcement learning framework designed to accelerate research by abstracting away engineering challenges associated with deep reinforcement learning. adept provides:
This code is early-access, expect rough edges. Interfaces subject to change. We're happy to accept feedback and contributions.
git clone https://github.com/heronsystems/adeptRL
cd adeptRL
pip install -e .[all]
From docker:
Train an Agent
Logs go to /tmp/adept_logs/
by default. The log directory contains the
tensorboard file, saved models, and other metadata.
# Local Mode (A2C)
# We recommend 4GB+ GPU memory, 8GB+ RAM, 4+ Cores
python -m adept.app local --env BeamRiderNoFrameskip-v4
# Distributed Mode (A2C, requires NCCL)
# We recommend 2+ GPUs, 8GB+ GPU memory, 32GB+ RAM, 4+ Cores
python -m adept.app distrib --env BeamRiderNoFrameskip-v4
# IMPALA (requires ray, resource intensive)
# We recommend 2+ GPUs, 8GB+ GPU memory, 32GB+ RAM, 4+ Cores
python -m adept.app actorlearner --env BeamRiderNoFrameskip-v4
# To see a full list of options:
python -m adept.app -h
python -m adept.app help <command>
Use your own Agent, Environment, Network, or SubModule
"""
my_script.py
Train an agent on a single GPU.
"""
from adept.scripts.local import parse_args, main
from adept.network import NetworkModule, SubModule1D
from adept.agent import AgentModule
from adept.env import EnvModule
class MyAgent(AgentModule):
pass # Implement
class MyEnv(EnvModule):
pass # Implement
class MyNet(NetworkModule):
pass # Implement
class MySubModule1D(SubModule1D):
pass # Implement
if __name__ == '__main__':
import adept
adept.register_agent(MyAgent)
adept.register_env(MyEnv)
adept.register_network(MyNet)
adept.register_submodule(MySubModule1D)
main(parse_args())
python my_script.py --agent MyAgent --env env-id-1 --custom-network MyNet
Local (Single-node, Single-GPU)
Distributed (Multi-node, Multi-GPU)
Importance Weighted Actor Learner Architectures, IMPALA (Single Node, Multi-GPU)
python -m adept.app local --logdir ~/local64_benchmark --eval -y --nb-step 50e6 --env <env-id>
We borrow pieces of OpenAI's gym and baselines code. We indicate where this is done.