RoboFlamingo is a pre-trained-VLM-based robotics learning framework that learns a wide variety of language-conditioned robot skills by fine-tuning on offline free-form imitation datasets. By exceeding the state-of-the-art performance with a large margin on the CALVIN benchmark, we show that RoboFlamingo can be an effective and competitive alternative to adapt VLMs to robot control. Our extensive experimental results also reveal several interesting conclusions regarding the behavior of different pre-trained VLMs on manipulation tasks. RoboFlamingo can be trained or evaluated on a single GPU server (GPU mem requirements depend on the model size), and we believe RoboFlamingo has the potential to be a cost-effective and easy-to-use solution for robotics manipulation, empowering everyone with the ability to fine-tune their own robotics policy.
This is also the official code repo for the paper Vision-Language Foundation Models as Effective Robot Imitators.
All our experiments are conducted on a single GPU server with 8 Nvidia A100 GPUs (80G).
Pre-trained models are available on Hugging Face.
We support pre-trained vision encoders from the OpenCLIP package, which includes OpenAI's pre-trained models.
We also support pre-trained language models from the transformers
package, such as MPT, RedPajama, LLaMA, OPT, GPT-Neo, GPT-J, and Pythia models.
from robot_flamingo.factor import create_model_and_transforms
model, image_processor, tokenizer = create_model_and_transforms(
clip_vision_encoder_path="ViT-L-14",
clip_vision_encoder_pretrained="openai",
lang_encoder_path="PATH/TO/LLM/DIR",
tokenizer_path="PATH/TO/LLM/DIR",
cross_attn_every_n_layers=1,
decoder_type='lstm',
)
The cross_attn_every_n_layers
argument controls how often cross-attention layers are applied and should be consistent with the VLM. The decoder_type
argument controls the type of the decoder, currently, we support lstm
, fc
, diffusion
(bugs exist for the dataloader), and GPT
.
We report results on the CALVIN benchmark.
Method | Training Data | Test Split | 1 | 2 | 3 | 4 | 5 | Avg Len |
---|---|---|---|---|---|---|---|---|
MCIL | ABCD (Full) | D | 0.373 | 0.027 | 0.002 | 0.000 | 0.000 | 0.40 |
HULC | ABCD (Full) | D | 0.889 | 0.733 | 0.587 | 0.475 | 0.383 | 3.06 |
HULC (retrained) | ABCD (Lang) | D | 0.892 | 0.701 | 0.548 | 0.420 | 0.335 | 2.90 |
RT-1 (retrained) | ABCD (Lang) | D | 0.844 | 0.617 | 0.438 | 0.323 | 0.227 | 2.45 |
Ours | ABCD (Lang) | D | 0.964 | 0.896 | 0.824 | 0.740 | 0.66 | 4.09 |
MCIL | ABC (Full) | D | 0.304 | 0.013 | 0.002 | 0.000 | 0.000 | 0.31 |
HULC | ABC (Full) | D | 0.418 | 0.165 | 0.057 | 0.019 | 0.011 | 0.67 |
RT-1 (retrained) | ABC (Lang) | D | 0.533 | 0.222 | 0.094 | 0.038 | 0.013 | 0.90 |
Ours | ABC (Lang) | D | 0.824 | 0.619 | 0.466 | 0.331 | 0.235 | 2.48 |
HULC | ABCD (Full) | D (Enrich) | 0.715 | 0.470 | 0.308 | 0.199 | 0.130 | 1.82 |
RT-1 (retrained) | ABCD (Lang) | D (Enrich) | 0.494 | 0.222 | 0.086 | 0.036 | 0.017 | 0.86 |
Ours | ABCD (Lang) | D (Enrich) | 0.720 | 0.480 | 0.299 | 0.211 | 0.144 | 1.85 |
Ours (freeze-emb) | ABCD (Lang) | D (Enrich) | 0.737 | 0.530 | 0.385 | 0.275 | 0.192 | 2.12 |
Follow the instructions in the OpenFlamingo and CALVIN to download the necessary dataset and VLM pretrained Models.
Download the CALVIN dataset, choose a split with:
cd $HULC_ROOT/dataset
sh download_data.sh D | ABC | ABCD | debug
Download the released OpenFlamingo models:
# params | Language model | Vision encoder | Xattn interval* | COCO 4-shot CIDEr | VQAv2 4-shot Accuracy | Avg Len | Weights |
---|---|---|---|---|---|---|---|
3B | anas-awadalla/mpt-1b-redpajama-200b | openai CLIP ViT-L/14 | 1 | 77.3 | 45.8 | 3.94 | Link |
3B | anas-awadalla/mpt-1b-redpajama-200b-dolly | openai CLIP ViT-L/14 | 1 | 82.7 | 45.7 | 4.09 | Link |
4B | togethercomputer/RedPajama-INCITE-Base-3B-v1 | openai CLIP ViT-L/14 | 2 | 81.8 | 49.0 | 3.67 | Link |
4B | togethercomputer/RedPajama-INCITE-Instruct-3B-v1 | openai CLIP ViT-L/14 | 2 | 85.8 | 49.0 | 3.79 | Link |
9B | anas-awadalla/mpt-7b | openai CLIP ViT-L/14 | 4 | 89.0 | 54.8 | 3.97 | Link |
Replace the ${lang_encoder_path}
and ${tokenizer_path}
of the path dictionary (e.g., mpt_dict
) in robot_flamingo/models/factory.py
for each pretrained VLM with your own paths.
Clone this repo
git clone https://github.com/RoboFlamingo/RoboFlamingo.git
Install the required packages:
cd RoboFlamingo
conda create -n RoboFlamingo python=3.8
source activate RoboFlamingo
pip install -r requirements.txt
torchrun --nnodes=1 --nproc_per_node=8 --master_port=6042 robot_flamingo/train/train_calvin.py
--report_to_wandb
--llm_name mpt_dolly_3b
--traj_cons
--use_gripper
--fusion_mode post
--rgb_pad 10
--gripper_pad 4
--precision fp32
--num_epochs 5
--gradient_accumulation_steps 1
--batch_size_calvin 6
--run_name RobotFlamingoDBG
--calvin_dataset ${calvin_dataset_path}
--lm_path ${lm_path}
--tokenizer_path ${tokenizer_path}
--openflamingo_checkpoint ${openflamingo_checkpoint}
--cross_attn_every_n_layers 4
--dataset_resampled
--loss_multiplier_calvin 1.0
--workers 1
--lr_scheduler constant
--warmup_steps 5000
--learning_rate 1e-4
--save_every_iter 10000
--from_scratch
--window_size 12 > ${log_file} 2>&1
${calvin_dataset_path}
is the path to the CALVIN dataset;
${lm_path}
is the path to the pre-trained LLM;
${tokenizer_path}
is the path to the VLM tokenizer;
${openflamingo_checkpoint}
is the path to the OpenFlamingo pre-trained model;
${log_file}
is the path to the log file.
We also provide robot_flamingo/pt_run_gripper_post_ws_12_traj_aug_mpt_dolly_3b.bash
to launch the training. This bash finetunes the MPT-3B-IFT
version of the OpenFlamingo model, which contains the default hyperparameters to train the model, and corresponds to the best results in the paper.
python eval_ckpts.py
By adding the checkpoint name and directory into eval_ckpts.py
, the script would automatically load the model and evaluate it. For example, if you want to evaluate the checkpoint at path 'your-checkpoint-path', you can modify the ckpt_dir
and ckpt_names
variables in eval_ckpts.py, and the evaluation results would be saved as 'logs/your-checkpoint-prefix.log'.
The results shown below indicate that co-training could preserve most ability of the VLM backbone on VL tasks, while losing a bit of performance on robot tasks.
use
bash robot_flamingo/pt_run_gripper_post_ws_12_traj_aug_mpt_dolly_3b_co_train.bash
to launch co-train RoboFlamingo with CoCO, VQAV2 and CALVIN. You should update CoCO and VQA paths in get_coco_dataset
and get_vqa_dataset
in robot_flamingo/data/data.py
.
Split | SR 1 | SR 2 | SR 3 | SR 4 | SR 5 | Avg Len |
---|---|---|---|---|---|---|
Co-Train | ABC->D | 82.9% | 63.6% | 45.3% | 32.1% | 23.4% |
Fine-tune | ABC->D | 82.4% | 61.9% | 46.6% | 33.1% | 23.5% |
Co-Train | ABCD->D | 95.7% | 85.8% | 73.7% | 64.5% | 56.1% |
Fine-tune | ABCD->D | 96.4% | 89.6% | 82.4% | 74.0% | 66.2% |
Co-Train | ABCD->D (Enrich) | 67.8% | 45.2% | 29.4% | 18.9% | 11.7% |
Fine-tune | ABCD->D (Enrich) | 72.0% | 48.0% | 29.9% | 21.1% | 14.4% |
coco | VQA | ||||||||
---|---|---|---|---|---|---|---|---|---|
BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE_L | CIDEr | SPICE | Acc | |
Fine-tune (3B, zero-shot) | 0.156 | 0.051 | 0.018 | 0.007 | 0.038 | 0.148 | 0.004 | 0.006 | 4.09 |
Fine-tune (3B, 4-shot) | 0.166 | 0.056 | 0.020 | 0.008 | 0.042 | 0.158 | 0.004 | 0.008 | 3.87 |
Co-Train (3B, zero-shot) | 0.225 | 0.158 | 0.107 | 0.072 | 0.124 | 0.334 | 0.345 | 0.085 | 36.37 |
Original Flamingo (80B, fine-tuned) | - | - | - | - | - | - | 1.381 | - | 82.0 |
The logo is generated using MidJourney
This work uses code from the following open-source projects and datasets:
Original: https://github.com/mees/calvin License: MIT
Original: https://github.com/openai/CLIP License: MIT
Original: https://github.com/mlfoundations/open_flamingo License: MIT
@article{li2023vision,
title = {Vision-Language Foundation Models as Effective Robot Imitators},
author = {Li, Xinghang and Liu, Minghuan and Zhang, Hanbo and Yu, Cunjun and Xu, Jie and Wu, Hongtao and Cheang, Chilam and Jing, Ya and Zhang, Weinan and Liu, Huaping and Li, Hang and Kong, Tao},
journal={arXiv preprint arXiv:2311.01378},
year={2023}