Un paquete R para ayudar a recuperar datos ordenados y subestimados.
No es probable que understatr
se envíe a CRAN. Obtenga la última versión de desarrollo de GitHub:
remotes :: install_github( ' ewenme/understatr ' )
library( understatr )
get_leagues_meta()
# > # A tibble: 48 × 4
# > league_name year season url
# > <chr> <dbl> <chr> <chr>
# > 1 EPL 2021 2021/2022 https://understat.com/league/EPL/2021
# > 2 EPL 2020 2020/2021 https://understat.com/league/EPL/2020
# > 3 EPL 2019 2019/2020 https://understat.com/league/EPL/2019
# > 4 EPL 2018 2018/2019 https://understat.com/league/EPL/2018
# > 5 EPL 2017 2017/2018 https://understat.com/league/EPL/2017
# > 6 EPL 2016 2016/2017 https://understat.com/league/EPL/2016
# > 7 EPL 2015 2015/2016 https://understat.com/league/EPL/2015
# > 8 EPL 2014 2014/2015 https://understat.com/league/EPL/2014
# > 9 La liga 2021 2021/2022 https://understat.com/league/La%20liga/2021
# > 10 La liga 2020 2020/2021 https://understat.com/league/La%20liga/2020
# > # … with 38 more rows
get_team_players_stats( team_name = " Manchester City " , year = 2018 )
# >
# > ── Column specification ────────────────────────────────────────────────────────
# > cols(
# > player_id = col_double(),
# > player_name = col_character(),
# > games = col_double(),
# > time = col_double(),
# > goals = col_double(),
# > xG = col_double(),
# > assists = col_double(),
# > xA = col_double(),
# > shots = col_double(),
# > key_passes = col_double(),
# > yellow_cards = col_double(),
# > red_cards = col_double(),
# > position = col_character(),
# > team_name = col_character(),
# > npg = col_double(),
# > npxG = col_double(),
# > xGChain = col_double(),
# > xGBuildup = col_double()
# > )
# > # A tibble: 21 × 19
# > player_id player_name games time goals xG assists xA shots key_passes
# > <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# > 1 619 Sergio Agüero 33 2515 21 19.9 8 5.23 118 34
# > 2 618 Raheem Sterling 34 2788 17 15.9 10 10.8 77 66
# > 3 337 Leroy Sané 31 1866 10 6.98 10 8.10 56 40
# > 4 750 Riyad Mahrez 27 1333 7 6.62 4 5.01 54 24
# > 5 3635 Bernardo Silva 36 2851 7 8.20 7 8.63 62 71
# > 6 5543 Gabriel Jesus 29 993 7 12.6 3 2.65 43 21
# > 7 314 Ilkay Gündogan 31 2133 6 4.21 3 4.97 43 43
# > 8 617 David Silva 33 2426 6 8.13 8 10.1 51 73
# > 9 2498 Aymeric Laporte 35 3059 3 3.75 3 0.839 26 13
# > 10 447 Kevin De Bruyne 19 965 2 1.47 2 6.65 31 36
# > # … with 11 more rows, and 9 more variables: yellow_cards <dbl>,
# > # red_cards <dbl>, position <chr>, team_name <chr>, npg <dbl>, npxG <dbl>,
# > # xGChain <dbl>, xGBuildup <dbl>, year <dbl>
get_player_seasons_stats( player_id = 618 )
# >
# > ── Column specification ────────────────────────────────────────────────────────
# > cols(
# > position = col_character(),
# > games = col_double(),
# > goals = col_double(),
# > shots = col_double(),
# > time = col_double(),
# > xG = col_double(),
# > assists = col_double(),
# > xA = col_double(),
# > key_passes = col_double(),
# > year = col_double(),
# > team_name = col_character(),
# > yellow = col_double(),
# > red = col_double(),
# > npg = col_double(),
# > npxG = col_double(),
# > xGChain = col_double(),
# > xGBuildup = col_double(),
# > player_name = col_character()
# > )
# > # A tibble: 8 × 19
# > position games goals shots time xG assists xA key_passes year
# > <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# > 1 FWL 3 1 7 128 1.71 0 0.111 1 2021
# > 2 AML 31 10 70 2539 12.1 7 6.63 39 2020
# > 3 FWL 33 20 100 2678 19.8 1 7.21 48 2019
# > 4 AML 34 17 77 2788 15.9 10 10.8 66 2018
# > 5 Sub 33 18 87 2594 18.8 11 8.84 55 2017
# > 6 AMR 33 7 64 2532 8.11 6 5.50 46 2016
# > 7 AML 31 6 52 1943 7.15 2 3.25 35 2015
# > 8 AML 35 7 84 3059 8.79 7 6.04 75 2014
# > # … with 9 more variables: team_name <chr>, yellow <dbl>, red <dbl>, npg <dbl>,
# > # npxG <dbl>, xGChain <dbl>, xGBuildup <dbl>, player_id <dbl>,
# > # player_name <chr>
Si encuentra un error claro, presente un ejemplo mínimo reproducible en GitHub. Si tiene preguntas y otras discusiones, pruebe stackoverflow o envíe un correo electrónico.
Si bien no hay ningún aviso oficial en el sitio que apruebe la actividad de web scraping, el soporte de Understat ha confirmado previamente (a través de un intercambio de correo electrónico, el 8 de noviembre de 2018) que sus datos son de uso gratuito para fines no comerciales. Esta postura está sujeta a cambios.
Además, sea cortés y atribuya la fuente.
Tenga en cuenta que este proyecto se publica con un Código de conducta para colaboradores. Al participar en este proyecto, usted acepta cumplir con sus términos.