ai21 tokenizer
v0.12.0
Un tokenizador basado en SentencePiece para usos de producción con los modelos AI21
Jamba 1.5 Mini
o Jamba 1.5 Large
, deberá solicitar acceso al repositorio HuggingFace del modelo correspondiente:pip install ai21-tokenizer
poetry add ai21-tokenizer
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = Tokenizer . get_tokenizer ( PreTrainedTokenizers . JAMBA_1_5_MINI_TOKENIZER )
# Your code here
Otra forma sería utilizar nuestro tokenizador Jamba 1.5 Mini directamente:
from ai21_tokenizer import Jamba1_5Tokenizer
model_path = "<Path to your vocabs file>"
tokenizer = Jamba1_5Tokenizer ( model_path = model_path )
# Your code here
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = await Tokenizer . get_async_tokenizer ( PreTrainedTokenizers . JAMBA_1_5_MINI_TOKENIZER )
# Your code here
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = Tokenizer . get_tokenizer ( PreTrainedTokenizers . JAMBA_1_5_LARGE_TOKENIZER )
# Your code here
Otra forma sería utilizar nuestro tokenizador Jamba 1.5 Large directamente:
from ai21_tokenizer import Jamba1_5Tokenizer
model_path = "<Path to your vocabs file>"
tokenizer = Jamba1_5Tokenizer ( model_path = model_path )
# Your code here
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = await Tokenizer . get_async_tokenizer ( PreTrainedTokenizers . JAMBA_1_5_LARGE_TOKENIZER )
# Your code here
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = Tokenizer . get_tokenizer ( PreTrainedTokenizers . JAMBA_INSTRUCT_TOKENIZER )
# Your code here
Otra forma sería utilizar nuestro tokenizador Jamba directamente:
from ai21_tokenizer import JambaInstructTokenizer
model_path = "<Path to your vocabs file>"
tokenizer = JambaInstructTokenizer ( model_path = model_path )
# Your code here
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = await Tokenizer . get_async_tokenizer ( PreTrainedTokenizers . JAMBA_INSTRUCT_TOKENIZER )
# Your code here
Otra forma sería utilizar nuestro método de clase de tokenizador Jamba asíncrono para crear:
from ai21_tokenizer import AsyncJambaInstructTokenizer
model_path = "<Path to your vocabs file>"
tokenizer = AsyncJambaInstructTokenizer . create ( model_path = model_path )
# Your code here
from ai21_tokenizer import Tokenizer
tokenizer = Tokenizer . get_tokenizer ()
# Your code here
Otra forma sería utilizar nuestro modelo Jurásico directamente:
from ai21_tokenizer import JurassicTokenizer
model_path = "<Path to your vocabs file. This is usually a binary file that end with .model>"
config = {} # "dictionary object of your config.json file"
tokenizer = JurassicTokenizer ( model_path = model_path , config = config )
from ai21_tokenizer import Tokenizer
tokenizer = await Tokenizer . get_async_tokenizer ()
# Your code here
Otra forma sería utilizar nuestro método de clase de tokenizador Jamba asíncrono para crear:
from ai21_tokenizer import AsyncJurassicTokenizer
model_path = "<Path to your vocabs file. This is usually a binary file that end with .model>"
config = {} # "dictionary object of your config.json file"
tokenizer = AsyncJurassicTokenizer . create ( model_path = model_path , config = config )
# Your code here
Estas funciones le permiten codificar su texto en una lista de identificadores de token y volver a texto sin formato.
text_to_encode = "apple orange banana"
encoded_text = tokenizer . encode ( text_to_encode )
print ( f"Encoded text: { encoded_text } " )
decoded_text = tokenizer . decode ( encoded_text )
print ( f"Decoded text: { decoded_text } " )
# Assuming you have created an async tokenizer
text_to_encode = "apple orange banana"
encoded_text = await tokenizer . encode ( text_to_encode )
print ( f"Encoded text: { encoded_text } " )
decoded_text = await tokenizer . decode ( encoded_text )
print ( f"Decoded text: { decoded_text } " )
tokens = tokenizer . convert_ids_to_tokens ( encoded_text )
print ( f"IDs corresponds to Tokens: { tokens } " )
ids = tokenizer . convert_tokens_to_ids ( tokens )
# Assuming you have created an async tokenizer
tokens = await tokenizer . convert_ids_to_tokens ( encoded_text )
print ( f"IDs corresponds to Tokens: { tokens } " )
ids = tokenizer . convert_tokens_to_ids ( tokens )
Para obtener más ejemplos, consulte nuestra carpeta de ejemplos.