LoFTR eficiente: coincidencia de características locales semidensas con velocidad escasa
Yifan Wang * , Xingyi He * , Sida Peng, Dongli Tan, Xiaowei Zhou
CVPR 2024
conda env create -f environment.yaml
conda activate eloftr
pip install torch==2.0.0+cu118 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
La prueba y la capacitación se pueden descargar mediante el enlace de descarga proporcionado por LoFTR.
Proporcionamos nuestro modelo previamente entrenado en el enlace de descarga.
Primero debe configurar los subconjuntos de prueba de ScanNet y MegaDepth. Creamos enlaces simbólicos desde los conjuntos de datos descargados previamente a data/{{dataset}}/test
.
# set up symlinks
ln -s /path/to/scannet-1500-testset/ * /path/to/EfficientLoFTR/data/scannet/test
ln -s /path/to/megadepth-1500-testset/ * /path/to/EfficientLoFTR/data/megadepth/test
conda activate eloftr
bash scripts/reproduce_test/indoor_full_time.sh
bash scripts/reproduce_test/indoor_opt_time.sh
conda activate eloftr
bash scripts/reproduce_test/outdoor_full_auc.sh
bash scripts/reproduce_test/outdoor_opt_auc.sh
bash scripts/reproduce_test/indoor_full_auc.sh
bash scripts/reproduce_test/indoor_opt_auc.sh
conda env create -f environment_training.yaml # used a different version of pytorch, maybe slightly different from the inference environment
pip install -r requirements.txt
conda activate eloftr_training
bash scripts/reproduce_train/eloftr_outdoor.sh eloftr_outdoor
Si encuentra este código útil para su investigación, utilice la siguiente entrada BibTeX.
@inproceedings { wang2024eloftr ,
title = { {Efficient LoFTR}: Semi-Dense Local Feature Matching with Sparse-Like Speed } ,
author = { Wang, Yifan and He, Xingyi and Peng, Sida and Tan, Dongli and Zhou, Xiaowei } ,
booktitle = { CVPR } ,
year = { 2024 }
}