Implementación de Transformador Recurrente en Bloque - Pytorch. Lo más destacado del artículo es su capacidad para recordar algo de hace hasta 60.000 tokens.
Este diseño es SOTA para la línea de investigación de transformadores recurrentes, de hecho.
También incluirá atención flash y memorias enrutadas de hasta 250 000 tokens utilizando ideas de este documento.
$ pip install block-recurrent-transformer-pytorch
import torch
from block_recurrent_transformer_pytorch import BlockRecurrentTransformer
model = BlockRecurrentTransformer (
num_tokens = 20000 , # vocab size
dim = 512 , # model dimensions
depth = 6 , # depth
dim_head = 64 , # attention head dimensions
heads = 8 , # number of attention heads
max_seq_len = 1024 , # the total receptive field of the transformer, in the paper this was 2 * block size
block_width = 512 , # block size - total receptive field is max_seq_len, 2 * block size in paper. the block furthest forwards becomes the new cached xl memories, which is a block size of 1 (please open an issue if i am wrong)
num_state_vectors = 512 , # number of state vectors, i believe this was a single block size in the paper, but can be any amount
recurrent_layers = ( 4 ,), # where to place the recurrent layer(s) for states with fixed simple gating
use_compressed_mem = False , # whether to use compressed memories of a single block width, from https://arxiv.org/abs/1911.05507
compressed_mem_factor = 4 , # compression factor of compressed memories
use_flash_attn = True # use flash attention, if on pytorch 2.0
)
seq = torch . randint ( 0 , 2000 , ( 1 , 1024 ))
out , mems1 , states1 = model ( seq )
out , mems2 , states2 = model ( seq , xl_memories = mems1 , states = states1 )
out , mems3 , states3 = model ( seq , xl_memories = mems2 , states = states2 )
Primero pip install -r requirements.txt
, luego
$ python train.py
utilizar sesgo posicional dinámico
agregar recurrencia mejorada
configurar bloques de atención locales, como en el documento
clase de transformador envolvente para entrenamiento
cuidar la generación con recurrencia en RecurrentTrainWrapper
agregue la capacidad de abandonar recuerdos y estados completos durante cada paso del segmento durante el entrenamiento
Pruebe el sistema completo en enwik8 localmente y elimine estados y recuerdos y vea los efectos de primera mano.
asegúrese de que la atención también permita claves/valores de un solo cabezal
Realice algunos experimentos de compuerta fija en transformadores normales; no funciona.
integrar la atención flash
máscara de atención de caché + incrustaciones rotativas
agregar recuerdos comprimidos
volver a visitar a memformer
Intente enrutar memorias de larga distancia de hasta 250k usando el descenso de coordenadas (Wright et al.)
@article { Hutchins2022BlockRecurrentT ,
title = { Block-Recurrent Transformers } ,
author = { DeLesley S. Hutchins and Imanol Schlag and Yuhuai Wu and Ethan Dyer and Behnam Neyshabur } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2203.07852 }
}
@article { Shazeer2019FastTD ,
title = { Fast Transformer Decoding: One Write-Head is All You Need } ,
author = { Noam M. Shazeer } ,
journal = { ArXiv } ,
year = { 2019 } ,
volume = { abs/1911.02150 }
}
@inproceedings { Sun2022ALT ,
title = { A Length-Extrapolatable Transformer } ,
author = { Yutao Sun and Li Dong and Barun Patra and Shuming Ma and Shaohan Huang and Alon Benhaim and Vishrav Chaudhary and Xia Song and Furu Wei } ,
year = { 2022 }
}
@inproceedings { dao2022flashattention ,
title = { Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness } ,
author = { Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{'e}, Christopher } ,
booktitle = { Advances in Neural Information Processing Systems } ,
year = { 2022 }
}
@inproceedings { Ainslie2023CoLT5FL ,
title = { CoLT5: Faster Long-Range Transformers with Conditional Computation } ,
author = { Joshua Ainslie and Tao Lei and Michiel de Jong and Santiago Ontan'on and Siddhartha Brahma and Yury Zemlyanskiy and David Uthus and Mandy Guo and James Lee-Thorp and Yi Tay and Yun-Hsuan Sung and Sumit Sanghai } ,
year = { 2023 }
}
La memoria es atención a través del tiempo - Alex Graves