finetune
contient des fonctions supplémentaires pour le réglage du modèle qui étendent ce qui est actuellement dans le package tune
. Vous pouvez installer la version CRAN du package avec le code suivant :
install.packages( " finetune " )
Pour installer la version de développement du package, exécutez :
# install.packages("pak")
pak :: pak( " tidymodels/finetune " )
Il y a deux ensembles principaux d'outils dans le package : le recuit simulé et la course .
Le réglage via l'optimisation du recuit simulé est un outil de recherche itératif permettant de trouver de bonnes valeurs :
library( tidymodels )
library( finetune )
# Syntax very similar to `tune_grid()` or `tune_bayes()`:
# # -----------------------------------------------------------------------------
data( two_class_dat , package = " modeldata " )
set.seed( 1 )
rs <- bootstraps( two_class_dat , times = 10 ) # more resamples usually needed
# Optimize a regularized discriminant analysis model
library( discrim )
rda_spec <-
discrim_regularized( frac_common_cov = tune(), frac_identity = tune()) % > %
set_engine( " klaR " )
# # -----------------------------------------------------------------------------
set.seed( 2 )
sa_res <-
rda_spec % > %
tune_sim_anneal( Class ~ . , resamples = rs , iter = 20 , initial = 4 )
# > Optimizing roc_auc
# > Initial best: 0.86480
# > 1 ♥ new best roc_auc=0.87327 (+/-0.004592)
# > 2 ♥ new best roc_auc=0.87915 (+/-0.003864)
# > 3 ◯ accept suboptimal roc_auc=0.87029 (+/-0.004994)
# > 4 + better suboptimal roc_auc=0.87171 (+/-0.004717)
# > 5 ◯ accept suboptimal roc_auc=0.86944 (+/-0.005081)
# > 6 ◯ accept suboptimal roc_auc=0.86812 (+/-0.0052)
# > 7 ♥ new best roc_auc=0.88172 (+/-0.003647)
# > 8 ◯ accept suboptimal roc_auc=0.87678 (+/-0.004276)
# > 9 ◯ accept suboptimal roc_auc=0.8627 (+/-0.005784)
# > 10 + better suboptimal roc_auc=0.87003 (+/-0.005106)
# > 11 + better suboptimal roc_auc=0.87088 (+/-0.004962)
# > 12 ◯ accept suboptimal roc_auc=0.86803 (+/-0.005195)
# > 13 ◯ accept suboptimal roc_auc=0.85294 (+/-0.006498)
# > 14 ─ discard suboptimal roc_auc=0.84689 (+/-0.006867)
# > 15 ✖ restart from best roc_auc=0.85021 (+/-0.006623)
# > 16 ◯ accept suboptimal roc_auc=0.87607 (+/-0.004318)
# > 17 ◯ accept suboptimal roc_auc=0.87245 (+/-0.004799)
# > 18 + better suboptimal roc_auc=0.87706 (+/-0.004131)
# > 19 ◯ accept suboptimal roc_auc=0.87213 (+/-0.004791)
# > 20 ◯ accept suboptimal roc_auc=0.86218 (+/-0.005773)
show_best( sa_res , metric = " roc_auc " , n = 2 )
# > # A tibble: 2 × 9
# > frac_common_cov frac_identity .metric .estimator mean n std_err .config
# > <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
# > 1 0.308 0.0166 roc_auc binary 0.882 10 0.00365 Iter7
# > 2 0.121 0.0474 roc_auc binary 0.879 10 0.00386 Iter2
# > # ℹ 1 more variable: .iter <int>
Le deuxième ensemble de méthodes concerne les courses . Nous commençons par effectuer un petit ensemble de rééchantillonnages pour tous les points de la grille, puis nous testons statistiquement pour voir lesquels devraient être supprimés ou étudiés davantage. Les deux méthodes présentées ici sont basées sur celles de Kuhn (2014).
Par exemple, utiliser une analyse de type ANOVA pour filtrer les combinaisons de paramètres :
set.seed( 3 )
grid <-
rda_spec % > %
extract_parameter_set_dials() % > %
grid_max_entropy( size = 20 )
ctrl <- control_race( verbose_elim = TRUE )
set.seed( 4 )
grid_anova <-
rda_spec % > %
tune_race_anova( Class ~ . , resamples = rs , grid = grid , control = ctrl )
# > ℹ Evaluating against the initial 3 burn-in resamples.
# > ℹ Racing will maximize the roc_auc metric.
# > ℹ Resamples are analyzed in a random order.
# > ℹ Bootstrap10: 14 eliminated; 6 candidates remain.
# >
# > ℹ Bootstrap04: 2 eliminated; 4 candidates remain.
# >
# > ℹ Bootstrap03: All but one parameter combination were eliminated.
show_best( grid_anova , metric = " roc_auc " , n = 2 )
# > # A tibble: 1 × 8
# > frac_common_cov frac_identity .metric .estimator mean n std_err .config
# > <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
# > 1 0.831 0.0207 roc_auc binary 0.881 10 0.00386 Preproce…
tune_race_win_loss()
peut également être utilisé. Il traite les paramètres de réglage comme les équipes sportives dans un tournoi et calcule les statistiques de victoires/défaites.
set.seed( 4 )
grid_win_loss <-
rda_spec % > %
tune_race_win_loss( Class ~ . , resamples = rs , grid = grid , control = ctrl )
# > ℹ Racing will maximize the roc_auc metric.
# > ℹ Resamples are analyzed in a random order.
# > ℹ Bootstrap10: 3 eliminated; 17 candidates remain.
# >
# > ℹ Bootstrap04: 2 eliminated; 15 candidates remain.
# >
# > ℹ Bootstrap03: 2 eliminated; 13 candidates remain.
# >
# > ℹ Bootstrap01: 1 eliminated; 12 candidates remain.
# >
# > ℹ Bootstrap07: 1 eliminated; 11 candidates remain.
# >
# > ℹ Bootstrap05: 1 eliminated; 10 candidates remain.
# >
# > ℹ Bootstrap08: 1 eliminated; 9 candidates remain.
show_best( grid_win_loss , metric = " roc_auc " , n = 2 )
# > # A tibble: 2 × 8
# > frac_common_cov frac_identity .metric .estimator mean n std_err .config
# > <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
# > 1 0.831 0.0207 roc_auc binary 0.881 10 0.00386 Preproce…
# > 2 0.119 0.0470 roc_auc binary 0.879 10 0.00387 Preproce…
Ce projet est publié avec un code de conduite des contributeurs. En contribuant à ce projet, vous acceptez d'en respecter les termes.
Pour des questions et des discussions sur les packages Tidymodels, la modélisation et l'apprentissage automatique, veuillez publier sur Posit Community.
Si vous pensez avoir rencontré un bug, veuillez soumettre un problème.
Quoi qu’il en soit, apprenez à créer et partager un reprex (un exemple minimal et reproductible), pour communiquer clairement sur votre code.
Consultez plus de détails sur les directives de contribution pour les packages Tidymodels et comment obtenir de l'aide.