Escouade de mods
1.0.0
Il s'agit d'une implémentation PyTorch/GPU du document Mod-Squad : Concevoir des mélanges d'experts en tant qu'apprenants multitâches modulaires :
@article{chen2022modsquad,
title={Mod-Squad: Designing Mixtures of Experts As Modular Multi-Task Learners},
author={Zitian Chen and Yikang Shen and Mingyu Ding and Zhenfang Chen and Hengshuang Zhao and Erik Learned-Miller and Chuang Gan},
journal={CVPR},
year={2023}
}
Ensemble de données : économie de tâches
Un exemple de téléchargement à partir d'un petit sous-ensemble
omnitools.download class_object class_scene depth_euclidean depth_zbuffer edge_occlusion edge_texture keypoints2d keypoints3d nonfixated_matches normal points principal_curvature reshading rgb segment_semantic segment_unsup2d segment_unsup25d --components taskonomy --subset tiny --dest ./taskonomy_tiny/ --connections_total 40 --agree --name [your name] --email [your email]
Veuillez mettre les données dans ./data
Le modèle par défaut sera enregistré dans ./work_dir, les journaux seront enregistrés dans ./log_dir
Environnement : timm==0.3.2 pytorch==1.10.2
Installez le module MoE :
cd parallel_linear
pip3 install .
python -m torch.distributed.launch --nnodes=1 --nproc_per_node=2 --master_port 44875 main_mt.py
--batch_size 6
--epochs 100
--input_size 224
--blr 4e-4 --weight_decay 0.05
--warmup_epochs 10
--model mtvit_taskgate_att_mlp_base_MI_twice
--drop_path 0.1
--scaleup
--exp-name scaleup_mtvit_taskgate_att_mlp_base_MI_twice