L'idée derrière ce référentiel est de créer un chatbot contextuel capable de lire et de mettre à jour une base de données Neo4j. Le Cypher est généré à l'aide du point de terminaison GPT-4, tandis que les réponses sont générées avec le modèle gpt-3.5-turbo basé sur les informations de la base de données.
En savoir plus : https://medium.com/neo4j/context-aware-knowledge-graph-chatbot-with-gpt-4-and-neo4j-d3a99e8ae21e
Le projet utilise le projet Recommendation disponible dans le cadre du Neo4j Sandbox. Si vous souhaitez une instance locale de Neo4j, vous pouvez restaurer un dump de base de données disponible ici.
Assurez-vous de remplir les variables d'environnement comme indiqué dans le fichier .env.example
Exécutez le projet en utilisant
docker-compose up
puis ouvrez l'adresse localhost:8501 dans votre navigateur préféré
Vous pouvez utiliser l'exemple suivant pour avoir une idée de ce dont ce chatbot est capable
# I don't like comedy
MATCH (u:User {id: $userId}), (g:Genre {name:"Comedy"})
MERGE (u)-[:DISLIKE_GENRE]->(g)
RETURN distinct {answer: 'noted'} AS result
# I like comedy
MATCH (u:User {id: $userId}), (g:Genre {name:"Comedy"})
MERGE (u)-[:LIKE_GENRE]->(g)
RETURN distinct {answer: 'noted'} AS result
# I have already watched Top Gun
MATCH (u:User {id: $userId}), (m:Movie {title:"Top Gun"})
MERGE (u)-[:WATCHED]->(m)
RETURN distinct {answer: 'noted'} AS result
# I like Top Gun
MATCH (u:User {id: $userId}), (m:Movie {title:"Top Gun"})
MERGE (u)-[:LIKE_MOVIE]->(m)
RETURN distinct {answer: 'noted'} AS result
# What is a good comedy?
MATCH (u:User {id:$userId}), (m:Movie)-[:IN_GENRE]->(:Genre {name:"Comedy"})
WHERE NOT EXISTS {(u)-[:WATCHED]->(m)}
RETURN {movie: m.title} AS result
ORDER BY m.imdbRating DESC LIMIT 1
# Who played in Top Gun?
MATCH (m:Movie)<-[:ACTED_IN]-(a)
RETURN {actor: a.name} AS result
# What is the plot of the Copycat movie?
MATCH (m:Movie {title: "Copycat"})
RETURN {plot: m.plot} AS result
# Did Luis Guzmán appear in any other movies?
MATCH (p:Person {name:"Luis Guzmán"})-[:ACTED_IN]->(movie)
RETURN {movie: movie.title} AS result
# Do you know of any matrix movies?
MATCH (m:Movie)
WHERE toLower(m.title) CONTAINS toLower("matrix")
RETURN {movie:m.title} AS result
# Which movies do I like?
MATCH (u:User {id: $userId})-[:LIKE_MOVIE]->(m:Movie)
RETURN {movie:m.title} AS result
# Recommend a movie
MATCH (u:User {id: $userId})-[:LIKE_MOVIE]->(m:Movie)
MATCH (m)<-[r1:RATED]-()-[r2:RATED]->(otherMovie)
WHERE r1.rating > 3 AND r2.rating > 3 AND NOT EXISTS {(u)-[:WATCHED|LIKE_MOVIE|DISLIKE_MOVIE]->(otherMovie)}
WITH otherMovie, count(*) AS count
ORDER BY count DESC
LIMIT 1
RETURN {recommended_movie:otherMovie.title} AS result