Implémentation de Recurrent Memory Transformer (openreview) dans Pytorch. Ils ont récemment publié un court document de suivi démontrant qu'il était capable de copier des informations sur au moins 1 million de jetons.
Il ne fait aucun doute dans mon esprit que RMT ferait un agent RL plus puissant qu'AdA, qui n'est qu'un Transformer-XL - Mise à jour : Transformateur d'action récurrente avec mémoire (RATE)
Revue de l'article de Yannic Kilcher
$ pip install recurrent-memory-transformer-pytorch
import torch
from recurrent_memory_transformer_pytorch import RecurrentMemoryTransformer
model = RecurrentMemoryTransformer (
num_tokens = 20000 , # number of tokens
num_memory_tokens = 128 , # number of memory tokens, this will determine the bottleneck for information being passed to the future
dim = 512 , # model dimensions
depth = 6 , # transformer depth
causal = True , # autoregressive or not
dim_head = 64 , # dimension per head
heads = 8 , # heads
seq_len = 1024 , # sequence length of a segment
use_flash_attn = True # whether to use flash attention
)
x = torch . randint ( 0 , 256 , ( 1 , 1024 ))
logits1 , mem1 , _ = model ( x ) # (1, 1024, 20000), (1, 128, 512), None
logits2 , mem2 , _ = model ( x , mem1 ) # (1, 1024, 20000), (1, 128, 512), None
logits3 , mem3 , _ = model ( x , mem2 ) # (1, 1024, 20000), (1, 128, 512), None
# and so on ...
Avec des souvenirs XL
import torch
from recurrent_memory_transformer_pytorch import RecurrentMemoryTransformer
model = RecurrentMemoryTransformer (
num_tokens = 20000 ,
num_memory_tokens = 128 ,
dim = 512 ,
depth = 6 ,
causal = True ,
dim_head = 64 ,
heads = 8 ,
seq_len = 1024 ,
use_flash_attn = True ,
use_xl_memories = True , # set this to True
xl_mem_len = 512 # can be shorter than the seq len - i think just having a bit of the past will prevent much of the RMT memories memorizing the immediate preceding text
)
x = torch . randint ( 0 , 256 , ( 1 , 1024 ))
logits1 , mem1 , xl_mem1 = model ( x ) # (1, 1024, 20000), (1, 128, 512), [(2, 1, 512, 512)]
logits2 , mem2 , xl_mem2 = model ( x , mem1 , xl_memories = xl_mem1 ) # (1, 1024, 20000), (1, 128, 512), [(2, 1, 512, 512)]
logits3 , mem3 , xl_mem3 = model ( x , mem2 , xl_memories = xl_mem2 ) # (1, 1024, 20000), (1, 128, 512), [(2, 1, 512, 512)]
# and so on ...
Entraînez-vous sur une séquence absurdement longue
import torch
from recurrent_memory_transformer_pytorch import (
RecurrentMemoryTransformer ,
RecurrentMemoryTransformerWrapper
)
model = RecurrentMemoryTransformer (
num_tokens = 256 ,
num_memory_tokens = 128 ,
dim = 512 ,
depth = 6 ,
seq_len = 1024 ,
use_flash_attn = True ,
causal = True
)
model = RecurrentMemoryTransformerWrapper ( model ). cuda ()
seq = torch . randint ( 0 , 256 , ( 4 , 65536 )). cuda () # absurdly long sequence, in reality, they curriculum learned this starting with 1 segment to about 7-8 segments
loss = model ( seq , memory_replay_backprop = True ) # memory efficient training from memformer paper
déplacez le backprop de relecture de mémoire dans une fonction torch., testez le bidirectionnel, puis testez sur un problème réel
faire fonctionner correctement les intégrations rotatives avec les mémoires XL
ajouter des souvenirs xl, détachés
offrir un moyen de désactiver les intégrations rotatives, les intégrations positionnelles absolues et d'ajouter un décalage de jeton
faire des souvenirs masqués causalement une option
ajouter la technique de backprop de relecture de mémoire à partir du papier memformer
codage de position relative
Bloc transformateur récurrent
Formeur de mémoire
@inproceedings { bulatov2022recurrent ,
title = { Recurrent Memory Transformer } ,
author = { Aydar Bulatov and Yuri Kuratov and Mikhail Burtsev } ,
booktitle = { Advances in Neural Information Processing Systems } ,
editor = { Alice H. Oh and Alekh Agarwal and Danielle Belgrave and Kyunghyun Cho } ,
year = { 2022 } ,
url = { https://openreview.net/forum?id=Uynr3iPhksa }
}
@misc { bulatov2023scaling ,
title = { Scaling Transformer to 1M tokens and beyond with RMT } ,
author = { Aydar Bulatov and Yuri Kuratov and Mikhail S. Burtsev } ,
year = { 2023 } ,
eprint = { 2304.11062 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}
@inproceedings { dao2022flashattention ,
title = { Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness } ,
author = { Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{'e}, Christopher } ,
booktitle = { Advances in Neural Information Processing Systems } ,
year = { 2022 }
}
@misc { shazeer2020glu ,
title = { GLU Variants Improve Transformer } ,
author = { Noam Shazeer } ,
year = { 2020 } ,
url = { https://arxiv.org/abs/2002.05202 }
}
@misc { su2021roformer ,
title = { RoFormer: Enhanced Transformer with Rotary Position Embedding } ,
author = { Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu } ,
year = { 2021 } ,
eprint = { 2104.09864 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}
@inproceedings { Wu2020MemformerAM ,
title = { Memformer: A Memory-Augmented Transformer for Sequence Modeling } ,
author = { Qingyang Wu and Zhenzhong Lan and Kun Qian and Jing Gu and Alborz Geramifard and Zhou Yu } ,
booktitle = { AACL/IJCNLP } ,
year = { 2020 }
}
@software { peng_bo_2021_5196578 ,
author = { PENG Bo } ,
title = { BlinkDL/RWKV-LM: 0.01 } ,
month = { aug } ,
year = { 2021 } ,
publisher = { Zenodo } ,
version = { 0.01 } ,
doi = { 10.5281/zenodo.5196578 } ,
url = { https://doi.org/10.5281/zenodo.5196578 }
}
@misc { ding2021cogview ,
title = { CogView: Mastering Text-to-Image Generation via Transformers } ,
author = { Ming Ding and Zhuoyi Yang and Wenyi Hong and Wendi Zheng and Chang Zhou and Da Yin and Junyang Lin and Xu Zou and Zhou Shao and Hongxia Yang and Jie Tang } ,
year = { 2021 } ,
eprint = { 2105.13290 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@software { Dayma_DALLE_Mini_2021 ,
author = { Dayma, Boris and Patil, Suraj and Cuenca, Pedro and Saifullah, Khalid and Abraham, Tanishq and Lê Khắc, Phúc and Melas, Luke and Ghosh, Ritobrata } ,
doi = { 10.5281/zenodo.5146400 } ,
license = { Apache-2.0 } ,
month = { jul } ,
title = { {DALL·E Mini} } ,
url = { https://github.com/borisdayma/dalle-mini } ,
version = { v0.1-alpha } ,
year = { 2021 } }
@inproceedings { anonymous2022normformer ,
title = { NormFormer: Improved Transformer Pretraining with Extra Normalization } ,
author = { Anonymous } ,
booktitle = { Submitted to The Tenth International Conference on Learning Representations } ,
year = { 2022 } ,
url = { https://openreview.net/forum?id=GMYWzWztDx5 } ,
note = { under review }
}
@misc { ding2021erniedoc ,
title = { ERNIE-Doc: A Retrospective Long-Document Modeling Transformer } ,
author = { Siyu Ding and Junyuan Shang and Shuohuan Wang and Yu Sun and Hao Tian and Hua Wu and Haifeng Wang } ,
year = { 2021 } ,
eprint = { 2012.15688 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}
@article { Zhu2024HyperConnections ,
title = { Hyper-Connections } ,
author = { Defa Zhu and Hongzhi Huang and Zihao Huang and Yutao Zeng and Yunyao Mao and Banggu Wu and Qiyang Min and Xun Zhou } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2409.19606 } ,
url = { https://api.semanticscholar.org/CorpusID:272987528 }
}
@inproceedings { Zhou2024ValueRL ,
title = { Value Residual Learning For Alleviating Attention Concentration In Transformers } ,
author = { Zhanchao Zhou and Tianyi Wu and Zhiyun Jiang and Zhenzhong Lan } ,
year = { 2024 } ,
url = { https://api.semanticscholar.org/CorpusID:273532030 }
}