amazon personalize langchain extensions
1.0.0
Repo ini menyediakan serangkaian kelas utilitas untuk bekerja dengan Langchain. Saat ini ia memiliki kelas utilitas AmazonPersonalize
untuk bekerja dengan kampanye/pemberi rekomendasi Amazon Personalize dan pembuatan rantai kustom AmazonPersonalizeChain
untuk mengambil rekomendasi dari Amazon Personalize dan menjalankan perintah default (yang dapat diganti oleh pengguna).
Kloning repositori
git clone https://github.com/aws-samples/amazon-personalize-langchain-extensions.git
Pindah ke direktori repo
cd amazon-personalize-langchain-extensions
Instal kelasnya
pip install .
from aws_langchain import AmazonPersonalize
recommender_arn = "<insert_arn>"
client = AmazonPersonalize ( credentials_profile_name = "default" , region_name = "us-west-2" , recommender_arn = recommender_arn )
client . get_recommendations ( user_id = "1" )
from aws_langchain import AmazonPersonalize
from aws_langchain import AmazonPersonalizeChain
from langchain . llms . bedrock import Bedrock
recommender_arn = "<insert_arn>"
bedrock_llm = Bedrock ( model_id = "anthropic.claude-v2" , region_name = "us-west-2" )
client = AmazonPersonalize ( credentials_profile_name = "default" , region_name = "us-west-2" , recommender_arn = recommender_arn )
# Create personalize chain
# Use return_direct=True if you do not want summary
chain = AmazonPersonalizeChain . from_llm (
llm = bedrock_llm ,
client = client ,
return_direct = False
)
response = chain ({ 'user_id' : '1' })
print ( response )
from langchain . prompts . prompt import PromptTemplate
from aws_langchain import AmazonPersonalize
from aws_langchain import AmazonPersonalizeChain
from langchain . llms . bedrock import Bedrock
RANDOM_PROMPT_QUERY = """
You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week,
given the movie and user information below. Your email will leverage the power of storytelling and persuasive language.
The movies to recommend and their information is contained in the <movie> tag.
All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them.
Put the email between <email> tags.
<movie>
{result}
</movie>
Assistant:
"""
RANDOM_PROMPT = PromptTemplate ( input_variables = [ "result" ], template = RANDOM_PROMPT_QUERY )
recommender_arn = "<insert_arn>"
bedrock_llm = Bedrock ( model_id = "anthropic.claude-v2" , region_name = "us-west-2" )
client = AmazonPersonalize ( credentials_profile_name = "default" , region_name = "us-west-2" , recommender_arn = recommender_arn )
chain = AmazonPersonalizeChain . from_llm ( llm = bedrock_llm , client = client , return_direct = False , prompt_template = RANDOM_PROMPT )
chain . run ({ 'user_id' : '1' , 'item_id' : '234' })
from langchain . chains import SequentialChain
from langchain . chains import LLMChain
from aws_langchain import AmazonPersonalize
from aws_langchain import AmazonPersonalizeChain
from langchain . llms . bedrock import Bedrock
from langchain . prompts . prompt import PromptTemplate
RANDOM_PROMPT_QUERY_2 = """
You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week,
given the movie and user information below. Your email will leverage the power of storytelling and persuasive language.
You want the email to impress the user, so make it appealing to them.
The movies to recommend and their information is contained in the <movie> tag.
All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them.
Put the email between <email> tags.
<movie>
{result}
</movie>
Assistant:
"""
recommender_arn = "<insert_arn>"
bedrock_llm = Bedrock ( model_id = "anthropic.claude-v2" , region_name = "us-west-2" )
client = AmazonPersonalize ( credentials_profile_name = "default" , region_name = "us-west-2" , recommender_arn = recommender_arn )
RANDOM_PROMPT_2 = PromptTemplate ( input_variables = [ "result" ], template = RANDOM_PROMPT_QUERY_2 )
personalize_chain_instance = AmazonPersonalizeChain . from_llm ( llm = bedrock_llm , client = client , return_direct = True )
random_chain_instance = LLMChain ( llm = bedrock_llm , prompt = RANDOM_PROMPT_2 )
overall_chain = SequentialChain ( chains = [ personalize_chain_instance , random_chain_instance ], input_variables = [ "user_id" ], verbose = True )
overall_chain . run ({ 'user_id' : '1' , 'item_id' : '234' })
from aws_langchain import AmazonPersonalize
from aws_langchain import AmazonPersonalizeChain
from langchain . llms . bedrock import Bedrock
recommender_arn = "<insert_arn>"
metadata_column_list = [ "METADATA_COL1" ]
metadataMap = { "ITEMS" : metadata_column_list }
bedrock_llm = Bedrock ( model_id = "anthropic.claude-v2" , region_name = "us-west-2" )
client = AmazonPersonalize ( credentials_profile_name = "default" , region_name = "us-west-2" , recommender_arn = recommender_arn )
# Create personalize chain
# Use return_direct=True if you do not want summary
chain = AmazonPersonalizeChain . from_llm (
llm = bedrock_llm ,
client = client ,
return_direct = False
)
response = chain ({ 'user_id' : '1' , 'metadata_columns' : metadataMap })
print ( response )
pip uninstall aws-langchain
Buat cabang GitHub Anda dan buat permintaan tarik. Lihat KONTRIBUSI untuk informasi lebih lanjut.
Perpustakaan ini dilisensikan di bawah Lisensi MIT-0. Lihat file LISENSI.