[Kertas CosyVoice] [CosyVoice Studio] [Kode CosyVoice]
Untuk SenseVoice
, kunjungi repo SenseVoice dan ruang SenseVoice.
2024/07
2024/08
2024/09
TBD
Kloning dan instal
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
# If you failed to clone submodule due to network failures, please run following command until success
cd CosyVoice
git submodule update --init --recursive
conda create -n cosyvoice python=3.8
conda activate cosyvoice
# pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
conda install -y -c conda-forge pynini==2.1.5
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
# If you encounter sox compatibility issues
# ubuntu
sudo apt-get install sox libsox-dev
# centos
sudo yum install sox sox-devel
Pengunduhan model
Kami sangat menyarankan agar Anda mengunduh model CosyVoice-300M
CosyVoice-300M-SFT
CosyVoice-300M-Instruct
kami yang telah dilatih sebelumnya dan sumber daya CosyVoice-ttsfrd
.
Jika Anda ahli dalam bidang ini, dan hanya tertarik untuk melatih model CosyVoice Anda sendiri dari awal, Anda dapat melewati langkah ini.
# SDK模型下载
from modelscope import snapshot_download
snapshot_download ( 'iic/CosyVoice-300M' , local_dir = 'pretrained_models/CosyVoice-300M' )
snapshot_download ( 'iic/CosyVoice-300M-25Hz' , local_dir = 'pretrained_models/CosyVoice-300M-25Hz' )
snapshot_download ( 'iic/CosyVoice-300M-SFT' , local_dir = 'pretrained_models/CosyVoice-300M-SFT' )
snapshot_download ( 'iic/CosyVoice-300M-Instruct' , local_dir = 'pretrained_models/CosyVoice-300M-Instruct' )
snapshot_download ( 'iic/CosyVoice-ttsfrd' , local_dir = 'pretrained_models/CosyVoice-ttsfrd' )
# git模型下载,请确保已安装git lfs
mkdir -p pretrained_models
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
git clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hz
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
Secara opsional, Anda dapat mengekstrak sumber daya ttsfrd
dan menginstal paket ttsfrd
untuk kinerja normalisasi teks yang lebih baik.
Perhatikan bahwa langkah ini tidak diperlukan. Jika Anda tidak menginstal paket ttsfrd
, kami akan menggunakan WeTextProcessing secara default.
cd pretrained_models/CosyVoice-ttsfrd/
unzip resource.zip -d .
pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl
Penggunaan Dasar
Untuk inferensi zero_shot/cross_lingual, silakan gunakan model CosyVoice-300M
. Untuk inferensi sft, silakan gunakan model CosyVoice-300M-SFT
. Untuk inferensi instruksi, silakan gunakan model CosyVoice-300M-Instruct
. Pertama, tambahkan third_party/Matcha-TTS
ke PYTHONPATH
Anda.
export PYTHONPATH=third_party/Matcha-TTS
from cosyvoice . cli . cosyvoice import CosyVoice
from cosyvoice . utils . file_utils import load_wav
import torchaudio
cosyvoice = CosyVoice ( 'pretrained_models/CosyVoice-300M-SFT' , load_jit = True , load_onnx = False , fp16 = True )
# sft usage
print ( cosyvoice . list_avaliable_spks ())
# change stream=True for chunk stream inference
for i , j in enumerate ( cosyvoice . inference_sft ( '你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?' , '中文女' , stream = False )):
torchaudio . save ( 'sft_{}.wav' . format ( i ), j [ 'tts_speech' ], 22050 )
cosyvoice = CosyVoice ( 'pretrained_models/CosyVoice-300M-25Hz' ) # or change to pretrained_models/CosyVoice-300M for 50Hz inference
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
prompt_speech_16k = load_wav ( 'zero_shot_prompt.wav' , 16000 )
for i , j in enumerate ( cosyvoice . inference_zero_shot ( '收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。' , '希望你以后能够做的比我还好呦。' , prompt_speech_16k , stream = False )):
torchaudio . save ( 'zero_shot_{}.wav' . format ( i ), j [ 'tts_speech' ], 22050 )
# cross_lingual usage
prompt_speech_16k = load_wav ( 'cross_lingual_prompt.wav' , 16000 )
for i , j in enumerate ( cosyvoice . inference_cross_lingual ( '<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that ' s coming into the family is a reason why sometimes we don ' t buy the whole thing.' , prompt_speech_16k , stream = False )):
torchaudio . save ( 'cross_lingual_{}.wav' . format ( i ), j [ 'tts_speech' ], 22050 )
# vc usage
prompt_speech_16k = load_wav ( 'zero_shot_prompt.wav' , 16000 )
source_speech_16k = load_wav ( 'cross_lingual_prompt.wav' , 16000 )
for i , j in enumerate ( cosyvoice . inference_vc ( source_speech_16k , prompt_speech_16k , stream = False )):
torchaudio . save ( 'vc_{}.wav' . format ( i ), j [ 'tts_speech' ], 22050 )
cosyvoice = CosyVoice ( 'pretrained_models/CosyVoice-300M-Instruct' )
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
for i , j in enumerate ( cosyvoice . inference_instruct ( '在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。' , '中文男' , 'Theo ' Crimson ' , is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.' , stream = False )):
torchaudio . save ( 'instruct_{}.wav' . format ( i ), j [ 'tts_speech' ], 22050 )
Mulai demo web
Anda dapat menggunakan halaman demo web kami untuk mengenal CosyVoice dengan cepat. Kami mendukung inferensi sft/zero_shot/cross_lingual/instruct di demo web.
Silakan lihat situs demo untuk detailnya.
# change iic/CosyVoice-300M-SFT for sft inference, or iic/CosyVoice-300M-Instruct for instruct inference
python3 webui . py - - port 50000 - - model_dir pretrained_models / CosyVoice - 300 M
Penggunaan Tingkat Lanjut
Untuk pengguna tingkat lanjut, kami telah menyediakan skrip pelatihan dan inferensi di examples/libritts/cosyvoice/run.sh
. Anda dapat mengenal CosyVoice dengan mengikuti resep ini.
Bangun untuk penerapan
Secara opsional, jika Anda ingin menggunakan grpc untuk penerapan layanan, Anda dapat menjalankan langkah-langkah berikut. Jika tidak, Anda bisa mengabaikan langkah ini.
cd runtime/python
docker build -t cosyvoice:v1.0 .
# change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference
# for grpc usage
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c " cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity "
cd grpc && python3 client.py --port 50000 --mode < sft | zero_shot | cross_lingual | instruct >
# for fastapi usage
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c " cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && python3 server.py --port 50000 --model_dir iic/CosyVoice-300M && sleep infinity "
cd fastapi && python3 client.py --port 50000 --mode < sft | zero_shot | cross_lingual | instruct >
Anda bisa langsung berdiskusi di Masalah Github.
Anda juga dapat memindai kode QR untuk bergabung dengan grup obrolan resmi Dingding kami.
Konten yang disediakan di atas hanya untuk tujuan akademis dan dimaksudkan untuk menunjukkan kemampuan teknis. Beberapa contoh bersumber dari internet. Jika ada konten yang melanggar hak Anda, silakan hubungi kami untuk meminta penghapusannya.