Penerapan Panduan Gratis Pengklasifikasi di Pytorch, dengan penekanan pada pengondisian teks, dan fleksibilitas untuk menyertakan beberapa model penyematan teks, seperti yang dilakukan di eDiff-I
Sekarang jelas bahwa panduan teks adalah antarmuka utama bagi model. Repositori ini akan memanfaatkan beberapa keajaiban dekorator python untuk memudahkan penerapan pengkondisian teks SOTA ke model apa pun.
StabilityAI atas sponsor yang murah hati, serta sponsor saya yang lain di luar sana
? Huggingface untuk perpustakaan transformator mereka yang menakjubkan. Modul pengondisian teks akan menggunakan penyematan T5, seperti yang direkomendasikan penelitian terbaru
OpenCLIP untuk menyediakan model CLIP sumber terbuka SOTA. Model eDiff mengalami peningkatan besar dengan menggabungkan penyematan T5 dengan penyematan teks CLIP
$ pip install classifier-free-guidance-pytorch
import torch
from classifier_free_guidance_pytorch import TextConditioner
text_conditioner = TextConditioner (
model_types = 't5' ,
hidden_dims = ( 256 , 512 ),
hiddens_channel_first = False ,
cond_drop_prob = 0.2 # conditional dropout 20% of the time, must be greater than 0. to unlock classifier free guidance
). cuda ()
# pass in your text as a List[str], and get back a List[callable]
# each callable function receives the hiddens in the dimensions listed at init (hidden_dims)
first_condition_fn , second_condition_fn = text_conditioner ([ 'a dog chasing after a ball' ])
# these hiddens will be in the direct flow of your model, say in a unet
first_hidden = torch . randn ( 1 , 16 , 256 ). cuda ()
second_hidden = torch . randn ( 1 , 32 , 512 ). cuda ()
# conditioned features
first_conditioned = first_condition_fn ( first_hidden )
second_conditioned = second_condition_fn ( second_hidden )
Jika Anda ingin menggunakan pengkondisian berbasis perhatian silang (setiap fitur tersembunyi di jaringan Anda dapat menangani token subkata individual), cukup impor AttentionTextConditioner
saja. Istirahatnya sama
from classifier_free_guidance_pytorch import AttentionTextConditioner
text_conditioner = AttentionTextConditioner (
model_types = ( 't5' , 'clip' ), # something like in eDiff paper, where they used both T5 and Clip for even better results (Balaji et al.)
hidden_dims = ( 256 , 512 ),
cond_drop_prob = 0.2
)
Ini sedang dalam proses untuk mempermudah pengkondisian teks pada jaringan Anda.
Pertama, katakanlah Anda memiliki jaringan dua lapis yang sederhana
import torch
from torch import nn
class MLP ( nn . Module ):
def __init__ (
self ,
dim
):
super (). __init__ ()
self . proj_in = nn . Sequential ( nn . Linear ( dim , dim * 2 ), nn . ReLU ())
self . proj_mid = nn . Sequential ( nn . Linear ( dim * 2 , dim ), nn . ReLU ())
self . proj_out = nn . Linear ( dim , 1 )
def forward (
self ,
data
):
hiddens1 = self . proj_in ( data )
hiddens2 = self . proj_mid ( hiddens1 )
return self . proj_out ( hiddens2 )
# instantiate model and pass in some data, get (in this case) a binary prediction
model = MLP ( dim = 256 )
data = torch . randn ( 2 , 256 )
pred = model ( data )
Anda ingin mengkondisikan lapisan tersembunyi ( hiddens1
dan hiddens2
) dengan teks. Setiap elemen batch di sini akan mendapatkan pengondisian teks gratisnya sendiri
Ini telah dipangkas menjadi ~3 langkah menggunakan repositori ini.
import torch
from torch import nn
from classifier_free_guidance_pytorch import classifier_free_guidance_class_decorator
@ classifier_free_guidance_class_decorator
class MLP ( nn . Module ):
def __init__ ( self , dim ):
super (). __init__ ()
self . proj_in = nn . Sequential ( nn . Linear ( dim , dim * 2 ), nn . ReLU ())
self . proj_mid = nn . Sequential ( nn . Linear ( dim * 2 , dim ), nn . ReLU ())
self . proj_out = nn . Linear ( dim , 1 )
def forward (
self ,
inp ,
cond_fns # List[Callable] - (1) your forward function now receives a list of conditioning functions, which you invoke on your hidden tensors
):
cond_hidden1 , cond_hidden2 = cond_fns # conditioning functions are given back in the order of the `hidden_dims` set on the text conditioner
hiddens1 = self . proj_in ( inp )
hiddens1 = cond_hidden1 ( hiddens1 ) # (2) condition the first hidden layer with FiLM
hiddens2 = self . proj_mid ( hiddens1 )
hiddens2 = cond_hidden2 ( hiddens2 ) # condition the second hidden layer with FiLM
return self . proj_out ( hiddens2 )
# instantiate your model - extra keyword arguments will need to be defined, prepended by `text_condition_`
model = MLP (
dim = 256 ,
text_condition_type = 'film' , # can be film, attention, or null (none)
text_condition_model_types = ( 't5' , 'clip' ), # in this example, conditioning on both T5 and OpenCLIP
text_condition_hidden_dims = ( 512 , 256 ), # and pass in the hidden dimensions you would like to condition on. in this case there are two hidden dimensions (dim * 2 and dim, after the first and second projections)
text_condition_cond_drop_prob = 0.25 # conditional dropout probability for classifier free guidance. can be set to 0. if you do not need it and just want the text conditioning
)
# now you have your input data as well as corresponding free text as List[str]
data = torch . randn ( 2 , 256 )
texts = [ 'a description' , 'another description' ]
# (3) train your model, passing in your list of strings as 'texts'
pred = model ( data , texts = texts )
# after much training, you can now do classifier free guidance by passing in a condition scale of > 1. !
model . eval ()
guided_pred = model ( data , texts = texts , cond_scale = 3. , remove_parallel_component = True ) # cond_scale stands for conditioning scale from classifier free guidance paper
pengkondisian film lengkap, tanpa panduan bebas pengklasifikasi (digunakan di sini)
tambahkan panduan gratis pengklasifikasi untuk pengkondisian film
pengondisian perhatian silang yang lengkap
stress test untuk ruangwaktu unet dalam pembuatan video
@article { Ho2022ClassifierFreeDG ,
title = { Classifier-Free Diffusion Guidance } ,
author = { Jonathan Ho } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2207.12598 }
}
@article { Balaji2022eDiffITD ,
title = { eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers } ,
author = { Yogesh Balaji and Seungjun Nah and Xun Huang and Arash Vahdat and Jiaming Song and Karsten Kreis and Miika Aittala and Timo Aila and Samuli Laine and Bryan Catanzaro and Tero Karras and Ming-Yu Liu } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2211.01324 }
}
@inproceedings { dao2022flashattention ,
title = { Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness } ,
author = { Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{'e}, Christopher } ,
booktitle = { Advances in Neural Information Processing Systems } ,
year = { 2022 }
}
@inproceedings { Lin2023CommonDN ,
title = { Common Diffusion Noise Schedules and Sample Steps are Flawed } ,
author = { Shanchuan Lin and Bingchen Liu and Jiashi Li and Xiao Yang } ,
year = { 2023 }
}
@inproceedings { Chung2024CFGMC ,
title = { CFG++: Manifold-constrained Classifier Free Guidance for Diffusion Models } ,
author = { Hyungjin Chung and Jeongsol Kim and Geon Yeong Park and Hyelin Nam and Jong Chul Ye } ,
year = { 2024 } ,
url = { https://api.semanticscholar.org/CorpusID:270391454 }
}
@inproceedings { Sadat2024EliminatingOA ,
title = { Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion Models } ,
author = { Seyedmorteza Sadat and Otmar Hilliges and Romann M. Weber } ,
year = { 2024 } ,
url = { https://api.semanticscholar.org/CorpusID:273098845 }
}