** Bug telah ditemukan pada pemilihan tetangga dengan adanya masking. Jika Anda menjalankan eksperimen apa pun sebelum 0.1.12 yang memiliki masking, jalankan kembali eksperimen tersebut. **
Implementasi Jaringan Neural Grafik E(n)-Equivariant, di Pytorch. Mungkin pada akhirnya dapat digunakan untuk replikasi Alphafold2. Teknik ini berlaku untuk fitur invarian sederhana, dan akhirnya mengalahkan semua metode sebelumnya (termasuk SE3 Transformer dan Lie Conv) baik dalam akurasi maupun kinerja. SOTA dalam model sistem dinamis, tugas prediksi aktivitas molekuler, dll.
$ pip install egnn-pytorch
import torch
from egnn_pytorch import EGNN
layer1 = EGNN ( dim = 512 )
layer2 = EGNN ( dim = 512 )
feats = torch . randn ( 1 , 16 , 512 )
coors = torch . randn ( 1 , 16 , 3 )
feats , coors = layer1 ( feats , coors )
feats , coors = layer2 ( feats , coors ) # (1, 16, 512), (1, 16, 3)
Dengan tepian
import torch
from egnn_pytorch import EGNN
layer1 = EGNN ( dim = 512 , edge_dim = 4 )
layer2 = EGNN ( dim = 512 , edge_dim = 4 )
feats = torch . randn ( 1 , 16 , 512 )
coors = torch . randn ( 1 , 16 , 3 )
edges = torch . randn ( 1 , 16 , 16 , 4 )
feats , coors = layer1 ( feats , coors , edges )
feats , coors = layer2 ( feats , coors , edges ) # (1, 16, 512), (1, 16, 3)
Jaringan EGNN lengkap
import torch
from egnn_pytorch import EGNN_Network
net = EGNN_Network (
num_tokens = 21 ,
num_positions = 1024 , # unless what you are passing in is an unordered set, set this to the maximum sequence length
dim = 32 ,
depth = 3 ,
num_nearest_neighbors = 8 ,
coor_weights_clamp_value = 2. # absolute clamped value for the coordinate weights, needed if you increase the num neareest neighbors
)
feats = torch . randint ( 0 , 21 , ( 1 , 1024 )) # (1, 1024)
coors = torch . randn ( 1 , 1024 , 3 ) # (1, 1024, 3)
mask = torch . ones_like ( feats ). bool () # (1, 1024)
feats_out , coors_out = net ( feats , coors , mask = mask ) # (1, 1024, 32), (1, 1024, 3)
Hanya memperhatikan tetangga yang jarang, diberikan ke jaringan sebagai matriks ketetanggaan.
import torch
from egnn_pytorch import EGNN_Network
net = EGNN_Network (
num_tokens = 21 ,
dim = 32 ,
depth = 3 ,
only_sparse_neighbors = True
)
feats = torch . randint ( 0 , 21 , ( 1 , 1024 ))
coors = torch . randn ( 1 , 1024 , 3 )
mask = torch . ones_like ( feats ). bool ()
# naive adjacency matrix
# assuming the sequence is connected as a chain, with at most 2 neighbors - (1024, 1024)
i = torch . arange ( 1024 )
adj_mat = ( i [:, None ] >= ( i [ None , :] - 1 )) & ( i [:, None ] <= ( i [ None , :] + 1 ))
feats_out , coors_out = net ( feats , coors , mask = mask , adj_mat = adj_mat ) # (1, 1024, 32), (1, 1024, 3)
Anda juga dapat membuat jaringan secara otomatis menentukan tetangga urutan ke-N, dan meneruskan penyematan kedekatan (tergantung pesanan) untuk digunakan sebagai keunggulan, dengan dua argumen kata kunci tambahan
import torch
from egnn_pytorch import EGNN_Network
net = EGNN_Network (
num_tokens = 21 ,
dim = 32 ,
depth = 3 ,
num_adj_degrees = 3 , # fetch up to 3rd degree neighbors
adj_dim = 8 , # pass an adjacency degree embedding to the EGNN layer, to be used in the edge MLP
only_sparse_neighbors = True
)
feats = torch . randint ( 0 , 21 , ( 1 , 1024 ))
coors = torch . randn ( 1 , 1024 , 3 )
mask = torch . ones_like ( feats ). bool ()
# naive adjacency matrix
# assuming the sequence is connected as a chain, with at most 2 neighbors - (1024, 1024)
i = torch . arange ( 1024 )
adj_mat = ( i [:, None ] >= ( i [ None , :] - 1 )) & ( i [:, None ] <= ( i [ None , :] + 1 ))
feats_out , coors_out = net ( feats , coors , mask = mask , adj_mat = adj_mat ) # (1, 1024, 32), (1, 1024, 3)
Jika Anda perlu melewati tepian yang terus menerus
import torch
from egnn_pytorch import EGNN_Network
net = EGNN_Network (
num_tokens = 21 ,
dim = 32 ,
depth = 3 ,
edge_dim = 4 ,
num_nearest_neighbors = 3
)
feats = torch . randint ( 0 , 21 , ( 1 , 1024 ))
coors = torch . randn ( 1 , 1024 , 3 )
mask = torch . ones_like ( feats ). bool ()
continuous_edges = torch . randn ( 1 , 1024 , 1024 , 4 )
# naive adjacency matrix
# assuming the sequence is connected as a chain, with at most 2 neighbors - (1024, 1024)
i = torch . arange ( 1024 )
adj_mat = ( i [:, None ] >= ( i [ None , :] - 1 )) & ( i [:, None ] <= ( i [ None , :] + 1 ))
feats_out , coors_out = net ( feats , coors , edges = continuous_edges , mask = mask , adj_mat = adj_mat ) # (1, 1024, 32), (1, 1024, 3)
Arsitektur awal EGNN mengalami ketidakstabilan ketika jumlah tetangganya banyak. Untungnya, tampaknya ada dua solusi yang dapat mengurangi hal ini.
import torch
from egnn_pytorch import EGNN_Network
net = EGNN_Network (
num_tokens = 21 ,
dim = 32 ,
depth = 3 ,
num_nearest_neighbors = 32 ,
norm_coors = True , # normalize the relative coordinates
coor_weights_clamp_value = 2. # absolute clamped value for the coordinate weights, needed if you increase the num neareest neighbors
)
feats = torch . randint ( 0 , 21 , ( 1 , 1024 )) # (1, 1024)
coors = torch . randn ( 1 , 1024 , 3 ) # (1, 1024, 3)
mask = torch . ones_like ( feats ). bool () # (1, 1024)
feats_out , coors_out = net ( feats , coors , mask = mask ) # (1, 1024, 32), (1, 1024, 3)
import torch
from egnn_pytorch import EGNN
model = EGNN (
dim = dim , # input dimension
edge_dim = 0 , # dimension of the edges, if exists, should be > 0
m_dim = 16 , # hidden model dimension
fourier_features = 0 , # number of fourier features for encoding of relative distance - defaults to none as in paper
num_nearest_neighbors = 0 , # cap the number of neighbors doing message passing by relative distance
dropout = 0.0 , # dropout
norm_feats = False , # whether to layernorm the features
norm_coors = False , # whether to normalize the coordinates, using a strategy from the SE(3) Transformers paper
update_feats = True , # whether to update features - you can build a layer that only updates one or the other
update_coors = True , # whether ot update coordinates
only_sparse_neighbors = False , # using this would only allow message passing along adjacent neighbors, using the adjacency matrix passed in
valid_radius = float ( 'inf' ), # the valid radius each node considers for message passing
m_pool_method = 'sum' , # whether to mean or sum pool for output node representation
soft_edges = False , # extra GLU on the edges, purportedly helps stabilize the network in updated version of the paper
coor_weights_clamp_value = None # clamping of the coordinate updates, again, for stabilization purposes
)
Untuk menjalankan contoh denoising tulang punggung protein, pertama-tama instal sidechainnet
$ pip install sidechainnet
Kemudian
$ python denoise_sparse.py
Pastikan Anda telah menginstal geometri pytorch secara lokal
$ python setup.py test
@misc { satorras2021en ,
title = { E(n) Equivariant Graph Neural Networks } ,
author = { Victor Garcia Satorras and Emiel Hoogeboom and Max Welling } ,
year = { 2021 } ,
eprint = { 2102.09844 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
}