Implementasi perhatian efisien yang dialihkan secara kondisional dalam arsitektur CoLT5 yang diusulkan, di Pytorch.
Mereka menggunakan penurunan koordinat dari makalah ini (algoritme utama berasal dari Wright dkk) untuk merutekan subset token untuk cabang 'lebih berat' dari blok feedforward dan perhatian.
Pembaruan: tidak yakin bagaimana routing skor yang dinormalisasi untuk nilai kunci digunakan. Apakah ada improvisasi di sana, meningkatkan nilai yang diproyeksikan, tetapi jika Anda merasa tahu jawabannya, silakan buka terbitan
Pembaruan 2: tampaknya berfungsi baik dengan improvisasi di atas
Stability.ai atas sponsor yang murah hati untuk mengerjakan penelitian kecerdasan buatan yang mutakhir
einops karena membuat hidupku mudah
Triton karena mengizinkan saya mempercepat penurunan koordinat dengan implementasi gabungan hanya dalam 2 hari, sehingga saya tidak perlu menulis ribuan baris kode CUDA
$ pip install colt5-attention
import torch
from colt5_attention import (
ConditionalRoutedFeedForward ,
ConditionalRoutedAttention ,
ConditionalRoutedTransformerBlock
)
# mock input, say it is 32768 length
tokens = torch . randn ( 2 , 32768 , 512 )
mask = torch . ones ( 2 , 32768 ). bool () # can handle variable lengthed sequences
# feedforward
ff = ConditionalRoutedFeedForward (
dim = 512 ,
light_ff_mult = 0.5 , # hidden dimension ratio of light branch
heavy_ff_mult = 4 , # hidden dimension ratio of heavy branch
num_heavy_tokens = 1024 # heavy branch receives only 1024 routed tokens of 32768
)
ff_out = ff ( tokens , mask = mask ) # (2, 32768, 512) - light and heavy branch summed
# attention
attn = ConditionalRoutedAttention (
dim = 512 ,
light_dim_head = 64 , # attention head dimension of light branch
light_heads = 8 , # number of attention heads for light branch
light_window_size = 128 , # local attention receptive field for light
heavy_dim_head = 64 , # attention head dimension of heavy branch
heavy_heads = 8 , # number of attention heads for heavy branch
num_heavy_tokens_q = 1024 , # heavy branch receives only 1024 routed tokens of 32768
num_heavy_tokens_kv = 1024 # heavy branch receives only 1024 routed tokens of 32768
)
attn_out = attn ( tokens , mask = mask ) # (2, 32768, 512) - light and heavy branch summed
# both attention and feedforward with residual
# the complete transformer block
# a stack of these would constitute the encoder of CoLT5
block = ConditionalRoutedTransformerBlock (
dim = 512 ,
light_dim_head = 64 ,
light_heads = 8 ,
light_window_size = 128 ,
heavy_dim_head = 64 ,
heavy_heads = 8 ,
light_ff_mult = 0.5 ,
heavy_ff_mult = 4 ,
num_heavy_ff_tokens = 1024 ,
num_heavy_attn_tokens_q = 1024 ,
num_heavy_attn_tokens_kv = 1024
)
block_out = block ( tokens , mask = mask ) # (2, 32768, 512)
Juga termasuk variasi perhatian yang dialihkan secara kondisional untuk perhatian silang, untuk dicoba dengan memori konteks panjang dalam transformator-xl
import torch
from colt5_attention import ConditionalRoutedCrossAttention
# mock input, let us say it is a transformer of 1024 length attending to 1 million context past memories
tokens = torch . randn ( 1 , 1024 , 512 ). cuda ()
tokens_mask = torch . ones ( 1 , 1024 ). bool (). cuda ()
memories = torch . randn ( 1 , 1_048_576 , 512 ). cuda ()
memories_mask = torch . ones ( 1 , 1_048_576 ). bool (). cuda ()
# conditionally routed cross attention
cross_attn = ConditionalRoutedCrossAttention (
dim = 512 ,
dim_head = 64 ,
heads = 8 ,
num_tokens_q = 512 , # only 512 routed from 1024
num_tokens_kv = 1024 , # only 1024 routed from 1 million
kv_routing_tokens = 2 , # say you want 2 routing tokens to route different sets of key / values to the queries. 4 attention heads will be allocated to each routed set in this example (8 / 2)
use_triton = True , # use cuda kernel
route_block_size = 131072 # route in blocks of 131072
). cuda ()
cross_attn_out = cross_attn (
tokens ,
context = memories ,
mask = tokens_mask ,
context_mask = memories_mask
)
cross_attn_out . shape # (1, 1024, 512) - same as tokens
Repositori ini juga memiliki versi improvisasi untuk perhatian autoregresif. Caranya adalah dengan melihat urutannya di windows. Setiap jendela hanya dapat menangani jendela kunci/nilai ke masa lalu. Perhatian lokal dari cabang cahaya mencakup perhatian intra-jendela.
Penurunan koordinat dimungkinkan melalui kernel CUDA yang ditulis dalam Triton. Terakhir, agar pembuatan autoregresif berfungsi dengan baik, saya harus memastikan token yang tidak dirutekan (untuk kueri), menghasilkan keluaran yang dipelajari, bukan hanya nol.
Saat ini saya melihat perbedaan sesekali antara gradien (setinggi 1e-1 untuk sebagian kecil elemen) setelah jumlah iterasi melebihi 20. Namun, enwik8 tampaknya berlatih dengan baik dan saya dapat melihat efek peruteannya. Pelatihannya juga sangat stabil
mantan.
import torch
from colt5_attention import ConditionalRoutedAutoregressiveAttention
# mock input, say it is 8192 length
tokens = torch . randn ( 2 , 8192 , 512 ). cuda ()
# attention
attn = ConditionalRoutedAutoregressiveAttention (
dim = 512 ,
light_dim_head = 64 , # attention head dimension of light branch
light_heads = 8 , # number of attention heads for light branch
light_window_size = 128 , # local attention receptive field for light
heavy_window_size = 128 , # the windowing for the routed heavy attention, by default, will be equal to the light window size. be aware if this is any greater than the light window size, there may be tokens that would be missed by attention
heavy_dim_head = 64 , # attention head dimension of heavy branch
heavy_heads = 8 , # number of attention heads for heavy branch
num_heavy_tokens_q = 32 , # heavy branch receives only 32 out of 128 of the windowed queries (1024 query tokens total)
num_heavy_tokens_kv = 1024 , # heavy branch receives only 1024 routed tokens for key-values
num_routed_kv = 2 , # one can split the attention heads so that groups of heads attend to different sets of key - values (2 routing tokens in this case)
use_triton = True , # will need to use Triton for this to be viable, otherwise it is too slow and memory efficient with the number of iterations
use_flash_attn = True # use flash attention in heavy branch
). cuda ()
attn_out = attn ( tokens ) + tokens # (2, 8192, 512) - output of attention with residual (prenorm is included)
Terakhir, repositori ini berisi versi untuk peta fitur gambar. Biasanya banyak makalah penelitian tidak dapat memberikan perhatian pada peta fitur gambar dengan dimensi lebih besar dari 32 kali 32. Perhatian yang dialihkan ini akan menggunakan patch jendela lokal untuk cabang ringan, dan mengalihkan perhatian untuk cabang berat.
mantan.
import torch
from colt5_attention import ConditionalRoutedImageAttention
attn = ConditionalRoutedImageAttention (
dim = 32 ,
light_dim_head = 64 , # attention head dimension of light branch
light_heads = 8 , # number of attention heads for light branch
light_window_size = 32 , # height and width of local window attention on the image feature map
channel_first = True , # whether to accept images with channel first than last
heavy_dim_head = 64 , # attention head dimension of heavy branch
heavy_heads = 8 , # number of attention heads for heavy branch
num_heavy_tokens_q = 1024 , # heavy branch receives only 1024 routed tokens of 65536
num_heavy_tokens_kv = 1024 # heavy branch receives only 1024 routed tokens of 65536
). cuda ()
fmap = torch . randn ( 1 , 32 , 256 , 256 ). cuda () # image feature map is too large for attention, given 256 ^ 2 == 65536 tokens
out = attn ( fmap )
ViT sederhana menggunakan penurunan koordinat, mengarahkan perhatian dan umpan maju
import torch
from colt5_attention . vit import ConditionalRoutedViT
vit = ConditionalRoutedViT (
image_size = 256 , # image size
patch_size = 32 , # patch size
num_classes = 1000 , # number of output classes
dim = 1024 , # feature dimension
depth = 6 , # depth
attn_num_heavy_tokens_q = 16 , # number of routed queries for heavy attention
attn_num_heavy_tokens_kv = 16 , # number of routed key/values for heavy attention
attn_heavy_dim_head = 64 , # dimension per attention head for heavy
attn_heavy_heads = 8 , # number of attention heads for heavy
attn_light_window_size = 4 , # the local windowed attention for light branch
attn_light_dim_head = 32 , # dimension per head for local light attention
attn_light_heads = 4 , # number of attention heads for local windowed attention
ff_num_heavy_tokens = 16 , # number of tokens routed for heavy feedforward
ff_heavy_mult = 4 , # the expansion factor of the heavy feedforward branch
ff_light_mult = 2 # expansion factor of the light feedforward branch
)
images = torch . randn ( 1 , 3 , 256 , 256 )
logits = vit ( images ) # (1, 1000)
Gunakan pembungkus kecil di sekitar penurunan koordinat untuk topk
yang dapat dibedakan
import torch
from colt5_attention import topk
x = torch . randn ( 1024 , 512 )
values , indices , coor_descent_values , gates = topk ( x , k = 10 , fused = True )
# you can either use the topk indices + gates, or use the values directly (values have already been multiplied with the gates within the function)
@inproceedings { Ainslie2023CoLT5FL ,
title = { CoLT5: Faster Long-Range Transformers with Conditional Computation } ,
author = { Joshua Ainslie and Tao Lei and Michiel de Jong and Santiago Ontan'on and Siddhartha Brahma and Yury Zemlyanskiy and David Uthus and Mandy Guo and James Lee-Thorp and Yi Tay and Yun-Hsuan Sung and Sumit Sanghai } ,
year = { 2023 }
}
@article { Tillet2019TritonAI ,
title = { Triton: an intermediate language and compiler for tiled neural network computations } ,
author = { Philippe Tillet and H. Kung and D. Cox } ,
journal = { Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages } ,
year = { 2019 }
}
@inproceedings { dao2022flashattention ,
title = { Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness } ,
author = { Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{'e}, Christopher } ,
booktitle = { Advances in Neural Information Processing Systems } ,
year = { 2022 }
}
@article { Lei2023ConditionalAP ,
title = { Conditional Adapters: Parameter-efficient Transfer Learning with Fast Inference } ,
author = { Tao Lei and Junwen Bai and Siddhartha Brahma and Joshua Ainslie and Kenton Lee and Yanqi Zhou and Nan Du and Vincent Zhao and Yuexin Wu and Bo Li and Yu Zhang and Ming-Wei Chang } ,
journal = { ArXiv } ,
year = { 2023 } ,
volume = { abs/2304.04947 }
}
@article { Beyer2022BetterPV ,
title = { Better plain ViT baselines for ImageNet-1k } ,
author = { Lucas Beyer and Xiaohua Zhai and Alexander Kolesnikov } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2205.01580 }
}