Sistem Penalaran O1 Lokal (LORS) adalah kerangka penalaran terdistribusi tingkat lanjut yang mengimplementasikan pendekatan baru untuk analisis yang cepat dan generasi respons menggunakan model bahasa besar lokal (LLM). Terinspirasi oleh arsitektur O1 Openai, LORS menggunakan sistem multi-agen dengan kemampuan penskalaan dinamis untuk memproses kueri kompleks melalui pipa pemrosesan paralel dengan berbagai kedalaman komputasi.
LORS Architecture
├── Prompt Analysis Engine
│ ├── Complexity Analyzer
│ ├── Domain Classifier
│ └── Cognitive Load Estimator
├── Agent Management System
│ ├── Fast Reasoning Agents (llama3.2)
│ └── Deep Reasoning Agents (llama3.1)
├── Response Synthesis Pipeline
│ ├── Thought Aggregator
│ ├── Context Enhancer
│ └── Final Synthesizer
└── Response Management System
├── Intelligent Naming
└── Structured Storage
Sistem ini menggunakan mekanisme analisis cepat yang canggih yang mengevaluasi:
Metrik kompleksitas linguistik
Analisis khusus domain
domain_complexity = {
'technical' : [ algorithm , system , framework ],
'scientific' : [ hypothesis , analysis , theory ],
'mathematical' : [ equation , formula , calculation ],
'business' : [ strategy , market , optimization ]
}
Algoritma penilaian kompleksitas
C = Σ(wi * fi)
where:
C = total complexity score
wi = weight of feature i
fi = normalized value of feature i
Sistem ini mengimplementasikan mekanisme penskalaan adaptif berdasarkan kompleksitas yang cepat:
Skor kompleksitas | Agen cepat | Agen yang dalam | Gunakan kasing |
---|---|---|---|
80-100 | 5 | 3 | Analisis teknis yang kompleks |
60-79 | 4 | 2 | Kompleksitas sedang |
40-59 | 3 | 2 | Analisis standar |
0-39 | 2 | 1 | Pertanyaan sederhana |
Agen penalaran cepat (llama3.2)
{
'temperature' : 0.7 ,
'max_tokens' : 150 ,
'response_time_target' : '< 2s'
}
Agen penalaran yang dalam (llama3.1)
{
'temperature' : 0.9 ,
'max_tokens' : 500 ,
'response_time_target' : '< 5s'
}
async def process_prompt ( prompt ):
complexity_analysis = analyze_prompt_complexity ( prompt )
fast_thoughts = await process_fast_agents ( prompt )
enhanced_context = synthesize_initial_thoughts ( fast_thoughts )
deep_thoughts = await process_deep_agents ( enhanced_context )
return synthesize_final_response ( fast_thoughts , deep_thoughts )
Sistem menggunakan pendekatan analisis fitur tertimbang:
def calculate_complexity_score ( features ):
weights = {
'sentence_count' : 0.1 ,
'avg_sentence_length' : 0.15 ,
'subjectivity' : 0.1 ,
'named_entities' : 0.15 ,
'technical_term_count' : 0.2 ,
'domain_complexity' : 0.1 ,
'cognitive_complexity' : 0.1 ,
'dependency_depth' : 0.1
}
return weighted_sum ( features , weights )
Sistem ini mengimplementasikan pendekatan sintesis tiga fase:
pip install ollama asyncio rich textblob spacy nltk
python -m spacy download en_core_web_sm
python local-o1-reasoning.py -p " Your complex query here "
Respons disimpan dalam format JSON:
{
"prompt" : " original_prompt " ,
"timestamp" : " ISO-8601 timestamp " ,
"complexity_analysis" : {
"score" : 75.5 ,
"features" : { ... }
},
"result" : {
"fast_analysis" : [ ... ],
"deep_analysis" : [ ... ],
"final_synthesis" : " ... "
}
}
Instal ollama
# For Linux
curl -L https://ollama.com/download/ollama-linux-amd64 -o ollama
chmod +x ollama
./ollama serve
# For Windows
# Download and install from https://ollama.com/download/windows
Instal model yang diperlukan
# Install the fast reasoning model (3B Model - fast thought)
ollama pull llama3.2
# Install the deep reasoning model (8B Model - deep thought)
ollama pull llama3.1
# Verify installations
ollama list
Output yang diharapkan:
NAME ID SIZE MODIFIED
llama3.2:latest 6c2d00dcdb27 2.1 GB 4 seconds ago
llama3.1:latest 3c46ab11d5ec 4.9 GB 6 days ago
Siapkan Lingkungan Python
# Create virtual environment
python -m venv lors-env
# Activate environment
# On Windows
lors-env S cripts a ctivate
# On Unix or MacOS
source lors-env/bin/activate
# Install requirements
pip install -r requirements.txt
# Install spaCy language model
python -m spacy download en_core_web_sm
# Simple query
python local-o1-reasoning.py -p " Explain the concept of quantum entanglement "
# Complex analysis
python local-o1-reasoning.py -p " Analyze the implications of quantum computing on modern cryptography systems and propose potential mitigation strategies "
Masalah pemuatan model
# Verify model status
ollama list
# Restart Ollama service if needed
ollama stop
ollama serve
Masalah memori GPU
nvidia-smi -l 1
Solusi kesalahan umum
ollama pull [model_name] --force
LORS/
├── local-o1-reasoning.py
├── requirements.txt
├── responses/
│ └── [automated response files]
└── README.md
Lisensi MIT
Kami menyambut kontribusi! Silakan lihat pedoman yang berkontribusi kami untuk informasi lebih lanjut.