Trax adalah perpustakaan ujung ke ujung untuk pembelajaran mendalam yang berfokus pada kode dan kecepatan yang jelas. Ini secara aktif digunakan dan dipelihara di tim otak Google. Notebook ini (jalankan di Colab) menunjukkan cara menggunakan Trax dan di mana Anda dapat menemukan lebih banyak informasi.
Kami menyambut kontribusi untuk Trax! Kami menyambut PRS dengan kode untuk model dan lapisan baru serta peningkatan kode dan dokumentasi kami. Kami terutama menyukai buku catatan yang menjelaskan bagaimana model bekerja dan menunjukkan cara menggunakannya untuk menyelesaikan masalah!
Berikut adalah beberapa contoh notebook:-
trax.data
APIPengaturan Umum
Jalankan sel berikut (sekali) sebelum menjalankan salah satu sampel kode.
import os
import numpy as np
!p ip install - q - U trax
import trax
Inilah cara Anda membuat penerjemah bahasa Inggris-Jerman di beberapa baris kode:
# Create a Transformer model.
# Pre-trained model config in gs://trax-ml/models/translation/ende_wmt32k.gin
model = trax . models . Transformer (
input_vocab_size = 33300 ,
d_model = 512 , d_ff = 2048 ,
n_heads = 8 , n_encoder_layers = 6 , n_decoder_layers = 6 ,
max_len = 2048 , mode = 'predict' )
# Initialize using pre-trained weights.
model . init_from_file ( 'gs://trax-ml/models/translation/ende_wmt32k.pkl.gz' ,
weights_only = True )
# Tokenize a sentence.
sentence = 'It is nice to learn new things today!'
tokenized = list ( trax . data . tokenize ( iter ([ sentence ]), # Operates on streams.
vocab_dir = 'gs://trax-ml/vocabs/' ,
vocab_file = 'ende_32k.subword' ))[ 0 ]
# Decode from the Transformer.
tokenized = tokenized [ None , :] # Add batch dimension.
tokenized_translation = trax . supervised . decoding . autoregressive_sample (
model , tokenized , temperature = 0.0 ) # Higher temperature: more diverse results.
# De-tokenize,
tokenized_translation = tokenized_translation [ 0 ][: - 1 ] # Remove batch and EOS.
translation = trax . data . detokenize ( tokenized_translation ,
vocab_dir = 'gs://trax-ml/vocabs/' ,
vocab_file = 'ende_32k.subword' )
print ( translation )
Es ist schön, heute neue Dinge zu lernen!
Trax termasuk model dasar (seperti resnet, LSTM, transformator) dan algoritma RL (seperti Inforforce, A2C, PPO). Ini juga secara aktif digunakan untuk penelitian dan termasuk model baru seperti reformator dan algoritma RL baru seperti AWR. Trax memiliki binding ke sejumlah besar set data pembelajaran yang mendalam, termasuk setensor2Tensor dan set data tensorflow.
Anda dapat menggunakan Trax baik sebagai perpustakaan dari skrip Python dan notebook Anda sendiri atau sebagai biner dari shell, yang bisa lebih nyaman untuk melatih model besar. Ini berjalan tanpa perubahan pada CPU, GPU, dan TPU.
Anda dapat belajar di sini cara kerja Trax, cara membuat model baru dan cara melatihnya di data Anda sendiri.
Unit dasar yang mengalir melalui model Trax adalah tensor - array multi -dimensi, kadang -kadang juga dikenal sebagai array numpy, karena paket yang paling banyak digunakan untuk operasi tensor - numpy
. Anda harus melihat panduan numpy jika Anda tidak tahu cara beroperasi dengan tensor: Trax juga menggunakan API numpy untuk itu.
Dalam Trax kami ingin operasi Numpy berjalan sangat cepat, memanfaatkan GPU dan TPU untuk mempercepatnya. Kami juga ingin secara otomatis menghitung gradien fungsi pada tensor. Ini dilakukan dalam paket trax.fastmath
berkat backends -nya - Jax dan Tensorflow Numpy.
from trax . fastmath import numpy as fastnp
trax . fastmath . use_backend ( 'jax' ) # Can be 'jax' or 'tensorflow-numpy'.
matrix = fastnp . array ([[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]])
print ( f'matrix = n { matrix } ' )
vector = fastnp . ones ( 3 )
print ( f'vector = { vector } ' )
product = fastnp . dot ( vector , matrix )
print ( f'product = { product } ' )
tanh = fastnp . tanh ( product )
print ( f'tanh(product) = { tanh } ' )
matrix =
[[1 2 3]
[4 5 6]
[7 8 9]]
vector = [1. 1. 1.]
product = [12. 15. 18.]
tanh(product) = [0.99999994 0.99999994 0.99999994]
Gradien dapat dihitung menggunakan trax.fastmath.grad
.
def f ( x ):
return 2.0 * x * x
grad_f = trax . fastmath . grad ( f )
print ( f'grad(2x^2) at 1 = { grad_f ( 1.0 ) } ' )
grad(2x^2) at 1 = 4.0
Lapisan adalah blok bangunan dasar model Trax. Anda akan mempelajari semua tentang mereka di Intro Layers tetapi untuk saat ini, lihat saja implementasi satu lapisan inti Trax, Embedding
:
class Embedding ( base . Layer ):
"""Trainable layer that maps discrete tokens/IDs to vectors."""
def __init__ ( self ,
vocab_size ,
d_feature ,
kernel_initializer = init . RandomNormalInitializer ( 1.0 )):
"""Returns an embedding layer with given vocabulary size and vector size.
Args:
vocab_size: Size of the input vocabulary. The layer will assign a unique
vector to each ID in `range(vocab_size)`.
d_feature: Dimensionality/depth of the output vectors.
kernel_initializer: Function that creates (random) initial vectors for
the embedding.
"""
super (). __init__ ( name = f'Embedding_ { vocab_size } _ { d_feature } ' )
self . _d_feature = d_feature # feature dimensionality
self . _vocab_size = vocab_size
self . _kernel_initializer = kernel_initializer
def forward ( self , x ):
"""Returns embedding vectors corresponding to input token IDs.
Args:
x: Tensor of token IDs.
Returns:
Tensor of embedding vectors.
"""
return jnp . take ( self . weights , x , axis = 0 , mode = 'clip' )
def init_weights_and_state ( self , input_signature ):
"""Returns tensor of newly initialized embedding vectors."""
del input_signature
shape_w = ( self . _vocab_size , self . _d_feature )
w = self . _kernel_initializer ( shape_w , self . rng )
self . weights = w
Lapisan dengan bobot yang dapat dilatih seperti Embedding
perlu diinisialisasi dengan tanda tangan (bentuk dan dtype) dari input, dan kemudian dapat dijalankan dengan memanggil mereka.
from trax import layers as tl
# Create an input tensor x.
x = np . arange ( 15 )
print ( f'x = { x } ' )
# Create the embedding layer.
embedding = tl . Embedding ( vocab_size = 20 , d_feature = 32 )
embedding . init ( trax . shapes . signature ( x ))
# Run the layer -- y = embedding(x).
y = embedding ( x )
print ( f'shape of y = { y . shape } ' )
x = [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
shape of y = (15, 32)
Model dalam Trax dibangun dari lapisan paling sering menggunakan kombinator Serial
dan Branch
. Anda dapat membaca lebih lanjut tentang kombinator di Layers Intro dan melihat kode untuk banyak model di trax/models/
, misalnya, ini adalah bagaimana model bahasa transformator diimplementasikan. Di bawah ini adalah contoh cara membangun model klasifikasi sentimen.
model = tl . Serial (
tl . Embedding ( vocab_size = 8192 , d_feature = 256 ),
tl . Mean ( axis = 1 ), # Average on axis 1 (length of sentence).
tl . Dense ( 2 ), # Classify 2 classes.
tl . LogSoftmax () # Produce log-probabilities.
)
# You can print model structure.
print ( model )
Serial[
Embedding_8192_256
Mean
Dense_2
LogSoftmax
]
Untuk melatih model Anda, Anda memerlukan data. Dalam Trax, aliran data direpresentasikan sebagai iterator Python, sehingga Anda dapat menelepon next(data_stream)
dan mendapatkan tuple, misalnya, (inputs, targets)
. Trax memungkinkan Anda untuk menggunakan dataset TensorFlow dengan mudah dan Anda juga bisa mendapatkan iterator dari file teks Anda sendiri menggunakan standar open('my_file.txt')
.
train_stream = trax . data . TFDS ( 'imdb_reviews' , keys = ( 'text' , 'label' ), train = True )()
eval_stream = trax . data . TFDS ( 'imdb_reviews' , keys = ( 'text' , 'label' ), train = False )()
print ( next ( train_stream )) # See one example.
(b"This was an absolutely terrible movie. Don't be lured in by Christopher Walken or Michael Ironside. Both are great actors, but this must simply be their worst role in history. Even their great acting could not redeem this movie's ridiculous storyline. This movie is an early nineties US propaganda piece. The most pathetic scenes were those when the Columbian rebels were making their cases for revolutions. Maria Conchita Alonso appeared phony, and her pseudo-love affair with Walken was nothing but a pathetic emotional plug in a movie that was devoid of any real meaning. I am disappointed that there are movies like this, ruining actor's like Christopher Walken's good name. I could barely sit through it.", 0)
Menggunakan modul trax.data
Anda dapat membuat pipa pemrosesan input, misalnya, untuk tokenize dan kocok data Anda. Anda membuat pipa data menggunakan trax.data.Serial
dan mereka adalah fungsi yang Anda terapkan untuk stream untuk membuat aliran yang diproses.
data_pipeline = trax . data . Serial (
trax . data . Tokenize ( vocab_file = 'en_8k.subword' , keys = [ 0 ]),
trax . data . Shuffle (),
trax . data . FilterByLength ( max_length = 2048 , length_keys = [ 0 ]),
trax . data . BucketByLength ( boundaries = [ 32 , 128 , 512 , 2048 ],
batch_sizes = [ 256 , 64 , 16 , 4 , 1 ],
length_keys = [ 0 ]),
trax . data . AddLossWeights ()
)
train_batches_stream = data_pipeline ( train_stream )
eval_batches_stream = data_pipeline ( eval_stream )
example_batch = next ( train_batches_stream )
print ( f'shapes = { [ x . shape for x in example_batch ] } ' ) # Check the shapes.
shapes = [(4, 1024), (4,), (4,)]
Saat Anda memiliki model dan data, gunakan trax.supervised.training
untuk menentukan tugas pelatihan dan evaluasi dan buat loop pelatihan. Loop pelatihan Trax mengoptimalkan pelatihan dan akan membuat log tensorboard dan pos pemeriksaan model untuk Anda.
from trax . supervised import training
# Training task.
train_task = training . TrainTask (
labeled_data = train_batches_stream ,
loss_layer = tl . WeightedCategoryCrossEntropy (),
optimizer = trax . optimizers . Adam ( 0.01 ),
n_steps_per_checkpoint = 500 ,
)
# Evaluaton task.
eval_task = training . EvalTask (
labeled_data = eval_batches_stream ,
metrics = [ tl . WeightedCategoryCrossEntropy (), tl . WeightedCategoryAccuracy ()],
n_eval_batches = 20 # For less variance in eval numbers.
)
# Training loop saves checkpoints to output_dir.
output_dir = os . path . expanduser ( '~/output_dir/' )
!r m - rf { output_dir }
training_loop = training . Loop ( model ,
train_task ,
eval_tasks = [ eval_task ],
output_dir = output_dir )
# Run 2000 steps (batches).
training_loop . run ( 2000 )
Step 1: Ran 1 train steps in 0.78 secs
Step 1: train WeightedCategoryCrossEntropy | 1.33800304
Step 1: eval WeightedCategoryCrossEntropy | 0.71843582
Step 1: eval WeightedCategoryAccuracy | 0.56562500
Step 500: Ran 499 train steps in 5.77 secs
Step 500: train WeightedCategoryCrossEntropy | 0.62914723
Step 500: eval WeightedCategoryCrossEntropy | 0.49253047
Step 500: eval WeightedCategoryAccuracy | 0.74062500
Step 1000: Ran 500 train steps in 5.03 secs
Step 1000: train WeightedCategoryCrossEntropy | 0.42949259
Step 1000: eval WeightedCategoryCrossEntropy | 0.35451687
Step 1000: eval WeightedCategoryAccuracy | 0.83750000
Step 1500: Ran 500 train steps in 4.80 secs
Step 1500: train WeightedCategoryCrossEntropy | 0.41843575
Step 1500: eval WeightedCategoryCrossEntropy | 0.35207348
Step 1500: eval WeightedCategoryAccuracy | 0.82109375
Step 2000: Ran 500 train steps in 5.35 secs
Step 2000: train WeightedCategoryCrossEntropy | 0.38129005
Step 2000: eval WeightedCategoryCrossEntropy | 0.33760912
Step 2000: eval WeightedCategoryAccuracy | 0.85312500
Setelah melatih model, jalankan seperti lapisan mana pun untuk mendapatkan hasil.
example_input = next ( eval_batches_stream )[ 0 ][ 0 ]
example_input_str = trax . data . detokenize ( example_input , vocab_file = 'en_8k.subword' )
print ( f'example input_str: { example_input_str } ' )
sentiment_log_probs = model ( example_input [ None , :]) # Add batch dimension.
print ( f'Model returned sentiment probabilities: { np . exp ( sentiment_log_probs ) } ' )
example input_str: I first saw this when I was a teen in my last year of Junior High. I was riveted to it! I loved the special effects, the fantastic places and the trial-aspect and flashback method of telling the story.<br /><br />Several years later I read the book and while it was interesting and I could definitely see what Swift was trying to say, I think that while it's not as perfect as the book for social commentary, as a story the movie is better. It makes more sense to have it be one long adventure than having Gulliver return after each voyage and making a profit by selling the tiny Lilliput sheep or whatever.<br /><br />It's much more arresting when everyone thinks he's crazy and the sheep DO make a cameo anyway. As a side note, when I saw Laputa I was stunned. It looks very much like the Kingdom of Zeal from the Chrono Trigger video game (1995) that also made me like this mini-series even more.<br /><br />I saw it again about 4 years ago, and realized that I still enjoyed it just as much. Really high quality stuff and began an excellent run of Sweeps mini-series for NBC who followed it up with the solid Merlin and interesting Alice in Wonderland.<pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>
Model returned sentiment probabilities: [[3.984500e-04 9.996014e-01]]