このリポジトリは、 DOSAデータセットで実験を実行するコードをホストします。
create_env.py
実行してdosa
conda 環境を作成します。
conda activate dosa
実行して環境をアクティブ化します。
.env ファイルに以下の環境変数を設定します。
OPENAI_API_KEY
HF_TOKEN
また、すべてのパッケージが正しく動作できるように、 PYTHONPATH
変数をエクスポートします。 PYTHONPATH
を追加するには、ターミナルで次のコマンドを記述します: export PYTHONPATH=$PYTHONPATH:
注意必ずLlama 2モデルへのアクセスを申請してください。また、HuggingFace を使用して llama2 モデルをダウンロードします。ラマ 2 モデルへのアクセスの申請に使用したものと同じ電子メール ID を使用していることを確認してください。 HF_TOKEN
生成し、 .env
ファイルに保存します。
データセットまたはコードを使用している場合は、次の bibTEX を使用してください。
@inproceedings{seth-etal-2024-dosa-dataset,
title = "{DOSA}: A Dataset of Social Artifacts from Different {I}ndian Geographical Subcultures",
author = "Seth, Agrima and
Ahuja, Sanchit and
Bali, Kalika and
Sitaram, Sunayana",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.474",
pages = "5323--5337",
abstract = "Generative models are increasingly being used in various applications, such as text generation, commonsense reasoning, and question-answering. To be effective globally, these models must be aware of and account for local socio-cultural contexts, making it necessary to have benchmarks to evaluate the models for their cultural familiarity. Since the training data for LLMs is web-based and the Web is limited in its representation of information, it does not capture knowledge present within communities that are not on the Web. Thus, these models exacerbate the inequities, semantic misalignment, and stereotypes from the Web. There has been a growing call for community-centered participatory research methods in NLP. In this work, we respond to this call by using participatory research methods to introduce DOSA, the first community-generated Dataset of 615 Social Artifacts, by engaging with 260 participants from 19 different Indian geographic subcultures. We use a gamified framework that relies on collective sensemaking to collect the names and descriptions of these artifacts such that the descriptions semantically align with the shared sensibilities of the individuals from those cultures. Next, we benchmark four popular LLMs and find that they show significant variation across regional sub-cultures in their ability to infer the artifacts.",
}
このプロジェクトは貢献と提案を歓迎します。ほとんどの投稿では、投稿を使用する権利をお客様が有しており、実際に当社に付与することを宣言する投稿者ライセンス契約 (CLA) に同意する必要があります。詳細については、https://cla.opensource.microsoft.com をご覧ください。
プル リクエストを送信すると、CLA ボットが CLA を提供する必要があるかどうかを自動的に判断し、PR を適切に装飾します (ステータス チェック、コメントなど)。ボットが提供する指示に従ってください。 CLA を使用するすべてのリポジトリでこれを 1 回行うだけで済みます。
このプロジェクトはマイクロソフトのオープンソース行動規範を採用しています。詳細については、「行動規範に関するよくある質問」を参照するか、追加の質問やコメントがあれば [email protected] までお問い合わせください。
このプロジェクトには、プロジェクト、製品、またはサービスの商標またはロゴが含まれている場合があります。 Microsoft の商標またはロゴの許可された使用には、Microsoft の商標およびブランド ガイドラインが適用され、それに従わなければなりません。このプロジェクトの修正バージョンで Microsoft の商標またはロゴを使用することは、混乱を引き起こしたり、Microsoft のスポンサーであることを暗示したりしてはなりません。第三者の商標またはロゴの使用には、それらの第三者のポリシーが適用されます。
データライセンスについてはこちらをご覧ください。
Microsoft のプライバシーに関する声明の詳細については、こちらをご覧ください。