iTransformer
0.8.0
iTransformer の実装 - 清華/Ant グループのアテンション ネットワークを使用した SOTA 時系列予測
「必要なのは注意だけだ」と真に宣言できるようになる前に、残るのは表形式のデータ (ここでは xgboost がまだチャンピオンです) だけです。
Apple が作者に名前の変更を求める前に。
正式実装はこちらでリリースされました!
StabilityAIと?現在の人工知能技術をオープンソース化する独立性を私に与えてくれた他のスポンサーと同様に、寛大なスポンサーシップに感謝します。
Greg DeVos は、 iTransformer
で実行した実験といくつかの即席のバリエーションを共有してくれました
$ pip install iTransformer
import torch
from iTransformer import iTransformer
# using solar energy settings
model = iTransformer (
num_variates = 137 ,
lookback_len = 96 , # or the lookback length in the paper
dim = 256 , # model dimensions
depth = 6 , # depth
heads = 8 , # attention heads
dim_head = 64 , # head dimension
pred_length = ( 12 , 24 , 36 , 48 ), # can be one prediction, or many
num_tokens_per_variate = 1 , # experimental setting that projects each variate to more than one token. the idea is that the network can learn to divide up into time tokens for more granular attention across time. thanks to flash attention, you should be able to accommodate long sequence lengths just fine
use_reversible_instance_norm = True # use reversible instance normalization, proposed here https://openreview.net/forum?id=cGDAkQo1C0p . may be redundant given the layernorms within iTransformer (and whatever else attention learns emergently on the first layer, prior to the first layernorm). if i come across some time, i'll gather up all the statistics across variates, project them, and condition the transformer a bit further. that makes more sense
)
time_series = torch . randn ( 2 , 96 , 137 ) # (batch, lookback len, variates)
preds = model ( time_series )
# preds -> Dict[int, Tensor[batch, pred_length, variate]]
# -> (12: (2, 12, 137), 24: (2, 24, 137), 36: (2, 36, 137), 48: (2, 48, 137))
時間トークン (および元の変量ごとのトークン) にわたってきめ細かい注意を行う即興バージョンの場合は、 iTransformer2D
をインポートし、追加のnum_time_tokens
を設定するだけです。
アップデート: うまくいきました!ここで実験を実行してくれた Greg DeVos に感謝します。
追記2:メールが届きました。はい、アーキテクチャが問題を解決できるのであれば、これについて自由に論文を書くことができます。ゲームにはスキンがありません
import torch
from iTransformer import iTransformer2D
# using solar energy settings
model = iTransformer2D (
num_variates = 137 ,
num_time_tokens = 16 , # number of time tokens (patch size will be (look back length // num_time_tokens))
lookback_len = 96 , # the lookback length in the paper
dim = 256 , # model dimensions
depth = 6 , # depth
heads = 8 , # attention heads
dim_head = 64 , # head dimension
pred_length = ( 12 , 24 , 36 , 48 ), # can be one prediction, or many
use_reversible_instance_norm = True # use reversible instance normalization
)
time_series = torch . randn ( 2 , 96 , 137 ) # (batch, lookback len, variates)
preds = model ( time_series )
# preds -> Dict[int, Tensor[batch, pred_length, variate]]
# -> (12: (2, 12, 137), 24: (2, 24, 137), 36: (2, 36, 137), 48: (2, 48, 137))
iTransformer
ですが、フーリエ トークンも使用されます (時系列の FFT は独自のトークンに投影され、変量トークンと一緒に処理され、最後に結合されます)
import torch
from iTransformer import iTransformerFFT
# using solar energy settings
model = iTransformerFFT (
num_variates = 137 ,
lookback_len = 96 , # or the lookback length in the paper
dim = 256 , # model dimensions
depth = 6 , # depth
heads = 8 , # attention heads
dim_head = 64 , # head dimension
pred_length = ( 12 , 24 , 36 , 48 ), # can be one prediction, or many
num_tokens_per_variate = 1 , # experimental setting that projects each variate to more than one token. the idea is that the network can learn to divide up into time tokens for more granular attention across time. thanks to flash attention, you should be able to accommodate long sequence lengths just fine
use_reversible_instance_norm = True # use reversible instance normalization, proposed here https://openreview.net/forum?id=cGDAkQo1C0p . may be redundant given the layernorms within iTransformer (and whatever else attention learns emergently on the first layer, prior to the first layernorm). if i come across some time, i'll gather up all the statistics across variates, project them, and condition the transformer a bit further. that makes more sense
)
time_series = torch . randn ( 2 , 96 , 137 ) # (batch, lookback len, variates)
preds = model ( time_series )
# preds -> Dict[int, Tensor[batch, pred_length, variate]]
# -> (12: (2, 12, 137), 24: (2, 24, 137), 36: (2, 36, 137), 48: (2, 48, 137))
@misc { liu2023itransformer ,
title = { iTransformer: Inverted Transformers Are Effective for Time Series Forecasting } ,
author = { Yong Liu and Tengge Hu and Haoran Zhang and Haixu Wu and Shiyu Wang and Lintao Ma and Mingsheng Long } ,
year = { 2023 } ,
eprint = { 2310.06625 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
}
@misc { shazeer2020glu ,
title = { GLU Variants Improve Transformer } ,
author = { Noam Shazeer } ,
year = { 2020 } ,
url = { https://arxiv.org/abs/2002.05202 }
}
@misc { burtsev2020memory ,
title = { Memory Transformer } ,
author = { Mikhail S. Burtsev and Grigory V. Sapunov } ,
year = { 2020 } ,
eprint = { 2006.11527 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}
@inproceedings { Darcet2023VisionTN ,
title = { Vision Transformers Need Registers } ,
author = { Timoth'ee Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski } ,
year = { 2023 } ,
url = { https://api.semanticscholar.org/CorpusID:263134283 }
}
@inproceedings { dao2022flashattention ,
title = { Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness } ,
author = { Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{'e}, Christopher } ,
booktitle = { Advances in Neural Information Processing Systems } ,
year = { 2022 }
}
@Article { AlphaFold2021 ,
author = { Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {v{Z}}{'i}dek, Augustin and Potapenko, Anna and Bridgland, Alex and Meyer, Clemens and Kohl, Simon A A and Ballard, Andrew J and Cowie, Andrew and Romera-Paredes, Bernardino and Nikolov, Stanislav and Jain, Rishub and Adler, Jonas and Back, Trevor and Petersen, Stig and Reiman, David and Clancy, Ellen and Zielinski, Michal and Steinegger, Martin and Pacholska, Michalina and Berghammer, Tamas and Bodenstein, Sebastian and Silver, David and Vinyals, Oriol and Senior, Andrew W and Kavukcuoglu, Koray and Kohli, Pushmeet and Hassabis, Demis } ,
journal = { Nature } ,
title = { Highly accurate protein structure prediction with {AlphaFold} } ,
year = { 2021 } ,
doi = { 10.1038/s41586-021-03819-2 } ,
note = { (Accelerated article preview) } ,
}
@inproceedings { kim2022reversible ,
title = { Reversible Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift } ,
author = { Taesung Kim and Jinhee Kim and Yunwon Tae and Cheonbok Park and Jang-Ho Choi and Jaegul Choo } ,
booktitle = { International Conference on Learning Representations } ,
year = { 2022 } ,
url = { https://openreview.net/forum?id=cGDAkQo1C0p }
}
@inproceedings { Katsch2023GateLoopFD ,
title = { GateLoop: Fully Data-Controlled Linear Recurrence for Sequence Modeling } ,
author = { Tobias Katsch } ,
year = { 2023 } ,
url = { https://api.semanticscholar.org/CorpusID:265018962 }
}
@article { Zhou2024ValueRL ,
title = { Value Residual Learning For Alleviating Attention Concentration In Transformers } ,
author = { Zhanchao Zhou and Tianyi Wu and Zhiyun Jiang and Zhenzhong Lan } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2410.17897 } ,
url = { https://api.semanticscholar.org/CorpusID:273532030 }
}
@article { Zhu2024HyperConnections ,
title = { Hyper-Connections } ,
author = { Defa Zhu and Hongzhi Huang and Zihao Huang and Yutao Zeng and Yunyao Mao and Banggu Wu and Qiyang Min and Xun Zhou } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2409.19606 } ,
url = { https://api.semanticscholar.org/CorpusID:272987528 }
}