finetune
contém algumas funções extras para ajuste de modelo que estendem o que está atualmente no pacote tune
. Você pode instalar a versão CRAN do pacote com o seguinte código:
install.packages( " finetune " )
Para instalar a versão de desenvolvimento do pacote, execute:
# install.packages("pak")
pak :: pak( " tidymodels/finetune " )
Existem dois conjuntos principais de ferramentas no pacote: recozimento simulado e corrida .
O ajuste via otimização de recozimento simulado é uma ferramenta de busca iterativa para encontrar bons valores:
library( tidymodels )
library( finetune )
# Syntax very similar to `tune_grid()` or `tune_bayes()`:
# # -----------------------------------------------------------------------------
data( two_class_dat , package = " modeldata " )
set.seed( 1 )
rs <- bootstraps( two_class_dat , times = 10 ) # more resamples usually needed
# Optimize a regularized discriminant analysis model
library( discrim )
rda_spec <-
discrim_regularized( frac_common_cov = tune(), frac_identity = tune()) % > %
set_engine( " klaR " )
# # -----------------------------------------------------------------------------
set.seed( 2 )
sa_res <-
rda_spec % > %
tune_sim_anneal( Class ~ . , resamples = rs , iter = 20 , initial = 4 )
# > Optimizing roc_auc
# > Initial best: 0.86480
# > 1 ♥ new best roc_auc=0.87327 (+/-0.004592)
# > 2 ♥ new best roc_auc=0.87915 (+/-0.003864)
# > 3 ◯ accept suboptimal roc_auc=0.87029 (+/-0.004994)
# > 4 + better suboptimal roc_auc=0.87171 (+/-0.004717)
# > 5 ◯ accept suboptimal roc_auc=0.86944 (+/-0.005081)
# > 6 ◯ accept suboptimal roc_auc=0.86812 (+/-0.0052)
# > 7 ♥ new best roc_auc=0.88172 (+/-0.003647)
# > 8 ◯ accept suboptimal roc_auc=0.87678 (+/-0.004276)
# > 9 ◯ accept suboptimal roc_auc=0.8627 (+/-0.005784)
# > 10 + better suboptimal roc_auc=0.87003 (+/-0.005106)
# > 11 + better suboptimal roc_auc=0.87088 (+/-0.004962)
# > 12 ◯ accept suboptimal roc_auc=0.86803 (+/-0.005195)
# > 13 ◯ accept suboptimal roc_auc=0.85294 (+/-0.006498)
# > 14 ─ discard suboptimal roc_auc=0.84689 (+/-0.006867)
# > 15 ✖ restart from best roc_auc=0.85021 (+/-0.006623)
# > 16 ◯ accept suboptimal roc_auc=0.87607 (+/-0.004318)
# > 17 ◯ accept suboptimal roc_auc=0.87245 (+/-0.004799)
# > 18 + better suboptimal roc_auc=0.87706 (+/-0.004131)
# > 19 ◯ accept suboptimal roc_auc=0.87213 (+/-0.004791)
# > 20 ◯ accept suboptimal roc_auc=0.86218 (+/-0.005773)
show_best( sa_res , metric = " roc_auc " , n = 2 )
# > # A tibble: 2 × 9
# > frac_common_cov frac_identity .metric .estimator mean n std_err .config
# > <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
# > 1 0.308 0.0166 roc_auc binary 0.882 10 0.00365 Iter7
# > 2 0.121 0.0474 roc_auc binary 0.879 10 0.00386 Iter2
# > # ℹ 1 more variable: .iter <int>
O segundo conjunto de métodos é para corridas . Começamos fazendo um pequeno conjunto de reamostragens para todos os pontos da grade e, em seguida, testando estatisticamente para ver quais devem ser descartados ou investigados mais. Os dois métodos aqui são baseados naqueles que deveriam ser apresentados em Kuhn (2014).
Por exemplo, usando uma análise do tipo ANOVA para filtrar combinações de parâmetros:
set.seed( 3 )
grid <-
rda_spec % > %
extract_parameter_set_dials() % > %
grid_max_entropy( size = 20 )
ctrl <- control_race( verbose_elim = TRUE )
set.seed( 4 )
grid_anova <-
rda_spec % > %
tune_race_anova( Class ~ . , resamples = rs , grid = grid , control = ctrl )
# > ℹ Evaluating against the initial 3 burn-in resamples.
# > ℹ Racing will maximize the roc_auc metric.
# > ℹ Resamples are analyzed in a random order.
# > ℹ Bootstrap10: 14 eliminated; 6 candidates remain.
# >
# > ℹ Bootstrap04: 2 eliminated; 4 candidates remain.
# >
# > ℹ Bootstrap03: All but one parameter combination were eliminated.
show_best( grid_anova , metric = " roc_auc " , n = 2 )
# > # A tibble: 1 × 8
# > frac_common_cov frac_identity .metric .estimator mean n std_err .config
# > <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
# > 1 0.831 0.0207 roc_auc binary 0.881 10 0.00386 Preproce…
tune_race_win_loss()
também pode ser usado. Ele trata os parâmetros de ajuste como equipes esportivas em um torneio e calcula estatísticas de vitórias/derrotas.
set.seed( 4 )
grid_win_loss <-
rda_spec % > %
tune_race_win_loss( Class ~ . , resamples = rs , grid = grid , control = ctrl )
# > ℹ Racing will maximize the roc_auc metric.
# > ℹ Resamples are analyzed in a random order.
# > ℹ Bootstrap10: 3 eliminated; 17 candidates remain.
# >
# > ℹ Bootstrap04: 2 eliminated; 15 candidates remain.
# >
# > ℹ Bootstrap03: 2 eliminated; 13 candidates remain.
# >
# > ℹ Bootstrap01: 1 eliminated; 12 candidates remain.
# >
# > ℹ Bootstrap07: 1 eliminated; 11 candidates remain.
# >
# > ℹ Bootstrap05: 1 eliminated; 10 candidates remain.
# >
# > ℹ Bootstrap08: 1 eliminated; 9 candidates remain.
show_best( grid_win_loss , metric = " roc_auc " , n = 2 )
# > # A tibble: 2 × 8
# > frac_common_cov frac_identity .metric .estimator mean n std_err .config
# > <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
# > 1 0.831 0.0207 roc_auc binary 0.881 10 0.00386 Preproce…
# > 2 0.119 0.0470 roc_auc binary 0.879 10 0.00387 Preproce…
Este projeto é lançado com um Código de Conduta do Colaborador. Ao contribuir para este projeto, você concorda em cumprir seus termos.
Para perguntas e discussões sobre pacotes tidymodels, modelagem e aprendizado de máquina, poste na Comunidade Posit.
Se você acha que encontrou um bug, envie um problema.
De qualquer forma, aprenda como criar e compartilhar um reprex (um exemplo mínimo e reproduzível) para comunicar claramente sobre seu código.
Confira mais detalhes sobre diretrizes de contribuição para pacotes tidymodels e como obter ajuda.