gotch
создает тонкую оболочку для API Pytorch C++ (Libtorch), чтобы использовать уже оптимизированные тензорные API C++ (3039) и динамические вычисления графов с поддержкой CUDA, а также предоставляет идиоматические API Go для разработки и реализации глубокого обучения в Go.
Некоторые особенности
gotch
находится в режиме активной разработки и может иметь критические изменения API. Не стесняйтесь отправлять запросы, сообщать о проблемах или обсуждать любые проблемы. Все вклады приветствуются.
gotch
текущую версию v0.9.1
11.8
, если CUDA доступна, в противном случае используется версия ЦП.2.1.0
ПРИМЕЧАНИЕ . libtorch
будет установлен в /usr/local/lib
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-libtorch.sh
chmod +x setup-libtorch.sh
export CUDA_VER=cpu && bash setup-libtorch.sh
Обновить среду : в Debian/Ubuntu добавьте/обновите следующие строки в файл .bashrc
export GOTCH_LIBTORCH= " /usr/local/lib/libtorch "
export LIBRARY_PATH= " $LIBRARY_PATH : $GOTCH_LIBTORCH /lib "
export CPATH= " $CPATH : $GOTCH_LIBTORCH /lib: $GOTCH_LIBTORCH /include: $GOTCH_LIBTORCH /include/torch/csrc/api/include "
export LD_LIBRARY_PATH= " $LD_LIBRARY_PATH : $GOTCH_LIBTORCH /lib "
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-gotch.sh
chmod +x setup-gotch.sh
export CUDA_VER=cpu && export GOTCH_VER=v0.9.1 && bash setup-gotch.sh
ПРИМЕЧАНИЕ . Убедитесь, что на вашем компьютере работает CUDA.
nvidia-smi
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-libtorch.sh
chmod +x setup-libtorch.sh
export CUDA_VER=11.8 && bash setup-libtorch.sh
Обновить среду : в Debian/Ubuntu добавьте/обновите следующие строки в файл .bashrc
export GOTCH_LIBTORCH= " /usr/local/lib/libtorch "
export LIBRARY_PATH= " $LIBRARY_PATH : $GOTCH_LIBTORCH /lib "
export CPATH= " $CPATH : $GOTCH_LIBTORCH /lib: $GOTCH_LIBTORCH /include: $GOTCH_LIBTORCH /include/torch/csrc/api/include "
LD_LIBRARY_PATH= " $LD_LIBRARY_PATH : $GOTCH_LIBTORCH /lib:/usr/lib64-nvidia:/usr/local/cuda- ${CUDA_VERSION} /lib64 "
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-gotch.sh
chmod +x setup-gotch.sh
export CUDA_VER=11.8 && export GOTCH_VER=v0.9.1 && bash setup-gotch.sh
import (
"fmt"
"github.com/sugarme/gotch"
"github.com/sugarme/gotch/ts"
)
func basicOps () {
xs := ts . MustRand ([] int64 { 3 , 5 , 6 }, gotch . Float , gotch . CPU )
fmt . Printf ( "%8.3f n " , xs )
fmt . Printf ( "%i" , xs )
/*
(1,.,.) =
0.391 0.055 0.638 0.514 0.757 0.446
0.817 0.075 0.437 0.452 0.077 0.492
0.504 0.945 0.863 0.243 0.254 0.640
0.850 0.132 0.763 0.572 0.216 0.116
0.410 0.660 0.156 0.336 0.885 0.391
(2,.,.) =
0.952 0.731 0.380 0.390 0.374 0.001
0.455 0.142 0.088 0.039 0.862 0.939
0.621 0.198 0.728 0.914 0.168 0.057
0.655 0.231 0.680 0.069 0.803 0.243
0.853 0.729 0.983 0.534 0.749 0.624
(3,.,.) =
0.734 0.447 0.914 0.956 0.269 0.000
0.427 0.034 0.477 0.535 0.440 0.972
0.407 0.945 0.099 0.184 0.778 0.058
0.482 0.996 0.085 0.605 0.282 0.671
0.887 0.029 0.005 0.216 0.354 0.262
TENSOR INFO:
Shape: [3 5 6]
DType: float32
Device: {CPU 1}
Defined: true
*/
// Basic tensor operations
ts1 := ts . MustArange ( ts . IntScalar ( 6 ), gotch . Int64 , gotch . CPU ). MustView ([] int64 { 2 , 3 }, true )
defer ts1 . MustDrop ()
ts2 := ts . MustOnes ([] int64 { 3 , 4 }, gotch . Int64 , gotch . CPU )
defer ts2 . MustDrop ()
mul := ts1 . MustMatmul ( ts2 , false )
defer mul . MustDrop ()
fmt . Printf ( "ts1: n %2d" , ts1 )
fmt . Printf ( "ts2: n %2d" , ts2 )
fmt . Printf ( "mul tensor (ts1 x ts2): n %2d" , mul )
/*
ts1:
0 1 2
3 4 5
ts2:
1 1 1 1
1 1 1 1
1 1 1 1
mul tensor (ts1 x ts2):
3 3 3 3
12 12 12 12
*/
// In-place operation
ts3 := ts . MustOnes ([] int64 { 2 , 3 }, gotch . Float , gotch . CPU )
fmt . Printf ( "Before: n %v" , ts3 )
ts3 . MustAddScalar_ ( ts . FloatScalar ( 2.0 ))
fmt . Printf ( "After (ts3 + 2.0): n %v" , ts3 )
/*
Before:
1 1 1
1 1 1
After (ts3 + 2.0):
3 3 3
3 3 3
*/
}
import (
"fmt"
"github.com/sugarme/gotch"
"github.com/sugarme/gotch/nn"
"github.com/sugarme/gotch/ts"
)
type Net struct {
conv1 * nn. Conv2D
conv2 * nn. Conv2D
fc * nn. Linear
}
func newNet ( vs * nn. Path ) * Net {
conv1 := nn . NewConv2D ( vs , 1 , 16 , 2 , nn . DefaultConv2DConfig ())
conv2 := nn . NewConv2D ( vs , 16 , 10 , 2 , nn . DefaultConv2DConfig ())
fc := nn . NewLinear ( vs , 10 , 10 , nn . DefaultLinearConfig ())
return & Net {
conv1 ,
conv2 ,
fc ,
}
}
func ( n Net ) ForwardT ( xs * ts. Tensor , train bool ) * ts. Tensor {
xs = xs . MustView ([] int64 { - 1 , 1 , 8 , 8 }, false )
outC1 := xs . Apply ( n . conv1 )
outMP1 := outC1 . MaxPool2DDefault ( 2 , true )
defer outMP1 . MustDrop ()
outC2 := outMP1 . Apply ( n . conv2 )
outMP2 := outC2 . MaxPool2DDefault ( 2 , true )
outView2 := outMP2 . MustView ([] int64 { - 1 , 10 }, true )
defer outView2 . MustDrop ()
outFC := outView2 . Apply ( n . fc )
return outFC . MustRelu ( true )
}
func main () {
vs := nn . NewVarStore ( gotch . CPU )
net := newNet ( vs . Root ())
xs := ts . MustOnes ([] int64 { 8 , 8 }, gotch . Float , gotch . CPU )
logits := net . ForwardT ( xs , false )
fmt . Printf ( "Logits: %0.3f" , logits )
}
//Logits: 0.000 0.000 0.000 0.225 0.321 0.147 0.000 0.207 0.000 0.000
gotch
в Google Colab или локально. gotch
имеет лицензию Apache 2.0.