ollama docker web application
1.0.0
Видеоинструкции нажмите здесь
Посмотреть PDF нажмите здесь
Посмотреть курс и подробную дорожную карту можно здесь.
Этот проект представляет собой чат-приложение, интегрирующее большую языковую модель (LLM), в которой используются:
график LR
A[Запрос пользователя] --> B[Бэкенд FastAPI]
B --> C[Обработчик шаблонов]
C --> D[Цепочка LangChain]
D --> E[Оллама LLM]
D --> F[(БД SQLite)]
Обработка шаблона подграфа
C --> G[Шаблон Подсказки]
G --> H[Информация о таблице]
H --> I[Вопрос]
конец
подграф LangChain Pipeline
D --> J[llm_chain]
J --> K[StrOutputParser]
конец
подграф Операции с базой данных
F --> L[Чат в магазине]
F --> M[Выполнить SQL]
конец
git clone < repository-url >
cd < project-folder >
.
├── docker-compose.yml
├── fastapi/
│ ├── Dockerfile
│ ├── app.py
│ ├── requirements.txt
│ └── ...
├── nextjs-app/
│ ├── Dockerfile
│ ├── package.json
│ └── ...
└── ollama/
├── Dockerfile
└── pull-qwen.sh
version : ' 3.8 '
services :
frontend :
build : ./nextjs-app
ports :
- " 3000:3000 "
volumes :
- ./nextjs-app:/app
depends_on :
- backend
backend :
build : ./fastapi
ports :
- " 8000:8000 "
volumes :
- ./fastapi:/app
depends_on :
- ollama-server
ollama-server :
build : ./ollama
volumes :
- ollama_data:/root/.ollama
deploy :
resources :
reservations :
devices :
- driver : nvidia
count : 1
capabilities : [gpu]
volumes :
ollama_data :
Бэкэнд FastAPI обрабатывает запросы от фронтенда и взаимодействует с Ollama LLM. Основной код в app.py
:
import requests
from fastapi import FastAPI , Response
# Database
from db import (
create_chat ,
get_all_chats ,
get_chat_by_id ,
delete_chat ,
DataChat ,
path_db
@ app . get ( '/ask' )
def ask ( prompt : str ):
# Langchain
from langchain_ollama import OllamaLLM # Ollama model
from langchain_ollama . llms import BaseLLM # Lớp cơ sở của LLM
from langchain . chains . llm import LLMChain # xử lí chuỗi các LLM
from langchain . chains . sql_database . query import create_sql_query_chain # tạo câu truy vấn cơ sở dữ liệu từ llm
from langchain . prompts import PromptTemplate # tạo câu truy vấn từ mẫu
from langchain_community . tools import QuerySQLDataBaseTool # công cụ truy vấn cơ sở dữ liệu
from langchain . sql_database import SQLDatabase # cơ sở dữ liệu
from langchain_core . output_parsers import StrOutputParser , PydanticOutputParser # xử lí kết quả trả về là kiểu dữ liệu chuỗi
from langchain_core . runnables import RunnablePassthrough # truyền đa dạng đối số
from operator import itemgetter # lấy giá trị từ dict
# Cache
from langchain . cache import InMemoryCache
from langchain . globals import set_llm_cache
#--------------------------------------------------
llm = OllamaLLM (
# Utility
from utils import get_sql_from_answer_llm
)
#test on docker
url_docker = "http://ollama-server:11434"
#test on local
url_local = "http://localhost:11434"
model = "qwen2.5-coder:0.5b"
app = FastAPI ()
llm = OllamaLLM (
base_url = url_local ,
model = model
)
@ app . get ( '/' )
cache = InMemoryCache ()
set_llm_cache ( cache )
@ app . get ( '/ask' )
template = PromptTemplate . from_template (
"""
Từ các bảng cơ sở dữ đã có: {tables}
Tạo câu truy vấn cơ sở dữ liệu từ câu hỏi sau:
{question}
Trả lời ở đây:
"""
)
# nếu câu hỏi không liên quan đến các bảng cơ sở dữ liệu đã có thì trả lời là "Không liên quan đến các bảng cơ sở dữ liệu đã có", và nếu câu hỏi gây nguy hiểm đến cơ sở dữ liệu thì trả lời là "Không thể trả lời câu hỏi này"
llm_chain = (
template |
llm |
StrOutputParser ()
)
db = SQLDatabase . from_uri ( f"sqlite:/// { path_db } " )
app = FastAPI ()
@ app . get ( '/' )
def home ():
return { "hello" : "World" }
@ app . get ( '/ask' )
def ask ( prompt : str ):
# name of the service is ollama-server, is hostname by bridge to connect same network
# res = requests.post('http://ollama-server:11434/api/generate', json={
# "prompt": prompt,
# "stream" : False,
# "model" : "qwen2.5-coder:0.5b"
# })
res = llm_chain . invoke ({
"tables" : f''' { db . get_table_info ( db . get_usable_table_names ()) } ''' ,
"question" : prompt
})
response = ""
if isinstance ( res , str ):
response = res
else :
response = res . text
# Store chat in database
chat = create_chat ( message = prompt , response = response )
try :
data_db = db . run ( get_sql_from_answer_llm ( response ))
except Exception as e :
data_db = str ( e )
return {
"answer" : response ,
"data_db" : data_db
}
Объяснение основных компонентов:
Сервер Ollama запускает модель Qwen и предоставляет API. Настройка в pull-qwen.sh
:
./bin/ollama serve &
pid= $!
sleep 5
echo " Pulling qwen2.5-coder model "
ollama pull qwen2.5-coder:0.5b
wait $pid
Фронтенд использует Next.js 13+ с App Router и Tailwind CSS. См. конфигурацию в:
{
"name" : " nextjs-app " ,
"version" : " 0.1.0 " ,
"private" : true ,
"scripts" : {
"dev" : " next dev --turbopack " ,
"build" : " next build " ,
"start" : " next start " ,
"lint" : " next lint "
},
"dependencies" : {
"react" : " 19.0.0-rc-66855b96-20241106 " ,
"react-dom" : " 19.0.0-rc-66855b96-20241106 " ,
"next" : " 15.0.3 "
},
"devDependencies" : {
"typescript" : " ^5 " ,
"@types/node" : " ^20 " ,
"@types/react" : " ^18 " ,
"@types/react-dom" : " ^18 " ,
"postcss" : " ^8 " ,
"tailwindcss" : " ^3.4.1 "
}
}
Пожалуйста, прочтите CONTRIBUTING.md для получения более подробной информации о процессе внесения кода.
Этот проект распространяется по лицензии MIT. Дополнительную информацию см. в файле ЛИЦЕНЗИИ.