Реализация Toolformer, языковых моделей, которые могут использовать инструменты, от MetaAI
Stability.ai за щедрую поддержку работы и передовые исследования в области искусственного интеллекта с открытым исходным кодом.
Энрико за то, что он начал работу с первоначальным внедрением различных инструментов!
Благодарим ChatGPT за использование всех регулярных выражений в этом репозитории для анализа функций и параметров вызовов API. Я плохо разбираюсь в регулярных выражениях, так что ИИ мне очень помог (без каких-либо заминок, все было идеально).
$ pip install toolformer-pytorch
Пример использования с предоставлением языковым моделям информации о текущей дате и времени.
import torch
from toolformer_pytorch import Toolformer , PaLM
# simple calendar api call - function that returns a string
def Calendar ():
import datetime
from calendar import day_name , month_name
now = datetime . datetime . now ()
return f'Today is { day_name [ now . weekday ()] } , { month_name [ now . month ] } { now . day } , { now . year } .'
# prompt for teaching it to use the Calendar function from above
prompt = f"""
Your task is to add calls to a Calendar API to a piece of text.
The API calls should help you get information required to complete the text.
You can call the API by writing "[Calendar()]"
Here are some examples of API calls:
Input: Today is the first Friday of the year.
Output: Today is the first [Calendar()] Friday of the year.
Input: The president of the United States is Joe Biden.
Output: The president of the United States is [Calendar()] Joe Biden.
Input: [input]
Output:
"""
data = [
"The store is never open on the weekend, so today it is closed." ,
"The number of days from now until Christmas is 30" ,
"The current day of the week is Wednesday."
]
# model - here using PaLM, but any nn.Module that returns logits in the shape (batch, seq, num_tokens) is fine
model = PaLM (
dim = 512 ,
depth = 2 ,
heads = 8 ,
dim_head = 64
). cuda ()
# toolformer
toolformer = Toolformer (
model = model ,
model_seq_len = 256 ,
teach_tool_prompt = prompt ,
tool_id = 'Calendar' ,
tool = Calendar ,
finetune = True
)
# invoking this will
# (1) prompt the model with your inputs (data), inserted into [input] tag
# (2) with the sampled outputs, filter out the ones that made proper API calls
# (3) execute the API calls with the `tool` given
# (4) filter with the specialized filter function (which can be used independently as shown in the next section)
# (5) fine-tune on the filtered results
filtered_stats = toolformer ( data )
# then, once you see the 'finetune complete' message
response = toolformer . sample_model_with_api_calls ( "How many days until the next new years?" )
# hopefully you see it invoke the calendar and utilize the response of the api call...
Основная новизна статьи заключается в определении оценки пригодности для выходных данных преобразователя, которому поручено вставлять вызовы API. Оценка используется для фильтрации выборочных выходных данных для точной настройки преобразователя для выполнения вызовов API, которые уменьшают запутанность следующего за ним текста.
import torch
from toolformer_pytorch import (
Toolformer ,
PaLM ,
filter_tokens_with_api_response
)
# model
palm = PaLM (
dim = 512 ,
num_tokens = 20000 ,
depth = 2 ,
heads = 8 ,
dim_head = 64
). cuda ()
# mock some tokens
mock_start_pos = 512
mock_api_call_length = 10
mock_api_start_id = 19998
mock_api_stop_id = 19999
tokens = torch . randint ( 0 , 20000 , ( 10 , 1024 )). cuda ()
tokens_with_api_response = torch . randint ( 0 , 20000 , ( 10 , 1024 )). cuda ()
tokens_without_api_response = torch . randint ( 0 , 20000 , ( 10 , 1024 )). cuda ()
tokens_with_api_response [:, mock_start_pos ] = mock_api_start_id
tokens_with_api_response [:, mock_start_pos + mock_api_call_length ] = mock_api_stop_id
tokens_without_api_response [:, mock_start_pos ] = mock_api_start_id
tokens_without_api_response [:, mock_start_pos + mock_api_call_length ] = mock_api_stop_id
# filter
filtered_results = filter_tokens_with_api_response (
model = palm ,
tokens = tokens ,
tokens_with_api_response = tokens_with_api_response ,
tokens_without_api_response = tokens_without_api_response ,
filter_threshold = 1. ,
api_start_token_id = mock_api_start_id ,
api_end_token_id = mock_api_stop_id
)
Чтобы вызвать инструменты для строки, сгенерированной языковой моделью, используйте invoke_tools
from toolformer_pytorch import invoke_tools
def inc ( i ):
return i + 1
def dec ( i ):
return i - 1
function_registry = dict (
inc = inc ,
dec = dec
)
text = 'make the following api calls: [inc(1)] and [dec(2)] and [ignored(3)]'
invoke_tools ( function_registry , text )
# make the following api calls: [inc(1) → 2] and [dec(2) → 1] and [ignored(3)]
Toolformer
Toolformer
, может быть вызвана с помощью нескольких инструментов — начните с размера пакета 1 и двигайтесь вверх. @inproceedings { Schick2023ToolformerLM ,
title = { Toolformer: Language Models Can Teach Themselves to Use Tools } ,
author = { Timo Schick and Jane Dwivedi-Yu and Roberto Dessi and Roberta Raileanu and Maria Lomeli and Luke Zettlemoyer and Nicola Cancedda and Thomas Scialom } ,
year = { 2023 }
}
@article { Gao2022PALPL ,
title = { PAL: Program-aided Language Models } ,
author = { Luyu Gao and Aman Madaan and Shuyan Zhou and Uri Alon and Pengfei Liu and Yiming Yang and Jamie Callan and Graham Neubig } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2211.10435 }
}
Реальность – это то, что, когда ты перестаешь в это верить, не исчезает. - Филип К. Дик.