mmdit
0.2.1
การใช้งาน MMDiT ชั้นเดียว เสนอโดย Esser และคณะ ใน Stable Diffusion 3 ใน Pytorch
นอกจากการสร้างซ้ำแบบตรงแล้ว ยังจะสรุปเป็น > 2 รูปแบบ เนื่องจากฉันสามารถจินตนาการถึง MMDiT สำหรับรูปภาพ เสียง และข้อความได้
นอกจากนี้ ยังเสนอรูปแบบการเอาใจใส่ตนเองแบบด้นสดซึ่งจะปรับเปลี่ยนตุ้มน้ำหนักเพื่อใช้ผ่านประตูที่เรียนรู้ แนวคิดนี้มาจากการโน้มน้าวใจแบบปรับตัวที่ Kang และคณะใช้ สำหรับ GigaGAN
$ pip install mmdit
import torch
from mmdit import MMDiTBlock
# define mm dit block
block = MMDiTBlock (
dim_joint_attn = 512 ,
dim_cond = 256 ,
dim_text = 768 ,
dim_image = 512 ,
qk_rmsnorm = True
)
# mock inputs
time_cond = torch . randn ( 2 , 256 )
text_tokens = torch . randn ( 2 , 512 , 768 )
text_mask = torch . ones (( 2 , 512 )). bool ()
image_tokens = torch . randn ( 2 , 1024 , 512 )
# single block forward
text_tokens_next , image_tokens_next = block (
time_cond = time_cond ,
text_tokens = text_tokens ,
text_mask = text_mask ,
image_tokens = image_tokens
)
สามารถใช้เวอร์ชันทั่วไปได้
import torch
from mmdit . mmdit_generalized_pytorch import MMDiT
mmdit = MMDiT (
depth = 2 ,
dim_modalities = ( 768 , 512 , 384 ),
dim_joint_attn = 512 ,
dim_cond = 256 ,
qk_rmsnorm = True
)
# mock inputs
time_cond = torch . randn ( 2 , 256 )
text_tokens = torch . randn ( 2 , 512 , 768 )
text_mask = torch . ones (( 2 , 512 )). bool ()
video_tokens = torch . randn ( 2 , 1024 , 512 )
audio_tokens = torch . randn ( 2 , 256 , 384 )
# forward
text_tokens , video_tokens , audio_tokens = mmdit (
modality_tokens = ( text_tokens , video_tokens , audio_tokens ),
modality_masks = ( text_mask , None , None ),
time_cond = time_cond ,
)
@article { Esser2024ScalingRF ,
title = { Scaling Rectified Flow Transformers for High-Resolution Image Synthesis } ,
author = { Patrick Esser and Sumith Kulal and A. Blattmann and Rahim Entezari and Jonas Muller and Harry Saini and Yam Levi and Dominik Lorenz and Axel Sauer and Frederic Boesel and Dustin Podell and Tim Dockhorn and Zion English and Kyle Lacey and Alex Goodwin and Yannik Marek and Robin Rombach } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2403.03206 } ,
url = { https://api.semanticscholar.org/CorpusID:268247980 }
}
@inproceedings { Darcet2023VisionTN ,
title = { Vision Transformers Need Registers } ,
author = { Timoth'ee Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski } ,
year = { 2023 } ,
url = { https://api.semanticscholar.org/CorpusID:263134283 }
}
@article { Zhu2024HyperConnections ,
title = { Hyper-Connections } ,
author = { Defa Zhu and Hongzhi Huang and Zihao Huang and Yutao Zeng and Yunyao Mao and Banggu Wu and Qiyang Min and Xun Zhou } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2409.19606 } ,
url = { https://api.semanticscholar.org/CorpusID:272987528 }
}