Youku mPLUG
1.0.0
Youku-mPLUG:千万级大规模中文视频语言预训练数据集和基准测试下载链接在此
纸
我们发布了公开的最大的中文高质量视频语言数据集(1000万),名为Youku-mPLUG ,该数据集来自中国知名视频分享网站优酷,具有严格的安全性、多样性和质量标准。
建议的 Youku-mPLUG 数据集中的视频剪辑和标题示例。
我们提供 3 个不同的下游多模态视频基准数据集来衡量预训练模型的能力。这 3 项不同的任务包括:
该数据集共包含1000万个视频,视频质量高,分布在20个超级类别到45个类别中。
Youku-mPLUG数据集中的类别分布。
您可以通过此链接下载所有视频和注释文件
注意:由于megatron_util的bug,安装megatron_util后,需要将conda/envs/youku/lib/python3.10/site-packages/megatron_util/initialize.py替换为当前目录下的initialize.py 。
conda env create -f environment.yml
conda activate youku
pip install megatron_util==1.3.0 -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
# For caption evaluation
apt-get install default-jre
首先,您应该从 Modelscope 下载 GPT-3 1.3B 和 2.7B 检查点。预训练模型可以在此处(1.3B)和此处(2.7B)下载。
将 mPLUG-Video 的预训练运行为:
exp_name = 'pretrain/gpt3_1.3B/pretrain_gpt3_freezeGPT_youku_v0'
PYTHONPATH = $ PYTHONPATH :. /
python - m torch . distributed . launch - - nproc_per_node = 8 - - master_addr = $ MASTER_ADDR
- - master_port = $ MASTER_PORT
- - nnodes = $ WORLD_SIZE
- - node_rank = $ RANK
- - use_env run_pretrain_distributed_gpt3 . py
- - config . / configs / ${ exp_name }. yaml
- - output_dir . / output / ${ exp_name }
- - enable_deepspeed
- - bf16
2 > & 1 | tee . / output / ${ exp_name } / train . log
进行下游微调。我们以视频类别预测为例:
exp_name = 'cls/cls_gpt3_1.3B_youku_v0_sharp_2'
PYTHONPATH = $ PYTHONPATH :. /
python - m torch . distributed . launch - - nproc_per_node = 8 - - master_addr = $ MASTER_ADDR
- - master_port = $ MASTER_PORT
- - nnodes = $ WORLD_SIZE
- - node_rank = $ RANK
- - use_env downstream / run_cls_distributed_gpt3 . py
- - config . / configs / ${ exp_name }. yaml
- - output_dir . / output / ${ exp_name }
- - enable_deepspeed
- - resume path / to / 1_3 B_mp_rank_00_model_states . pt
- - bf16
2 > & 1 | tee . / output / ${ exp_name } / train . log
下面我们展示验证集上的结果以供参考。
我们基于 mPLUG-Owl 构建了 mPLUG-Video 模型。要使用该模型,您应该首先将 mPLUG-Owl 存储库克隆为
git clone https://github.com/X-PLUG/mPLUG-Owl.git
cd mPLUG-Owl/mPLUG-Owl
HuggingFace 上提供了指令调整的检查点。对于模型的微调,可以参考 mPLUG-Owl Repo。要执行视频推理,您可以使用以下代码:
import torch
from mplug_owl_video . modeling_mplug_owl import MplugOwlForConditionalGeneration
from transformers import AutoTokenizer
from mplug_owl_video . processing_mplug_owl import MplugOwlImageProcessor , MplugOwlProcessor
pretrained_ckpt = 'MAGAer13/mplug-youku-bloomz-7b'
model = MplugOwlForConditionalGeneration . from_pretrained (
pretrained_ckpt ,
torch_dtype = torch . bfloat16 ,
device_map = { '' : 0 },
)
image_processor = MplugOwlImageProcessor . from_pretrained ( pretrained_ckpt )
tokenizer = AutoTokenizer . from_pretrained ( pretrained_ckpt )
processor = MplugOwlProcessor ( image_processor , tokenizer )
# We use a human/AI template to organize the context as a multi-turn conversation.
# <|video|> denotes an video placehold.
prompts = [
'''The following is a conversation between a curious human and AI assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: <|video|>
Human: 视频中的女人在干什么?
AI: ''' ]
video_list = [ 'yoga.mp4' ]
# generate kwargs (the same in transformers) can be passed in the do_generate()
generate_kwargs = {
'do_sample' : True ,
'top_k' : 5 ,
'max_length' : 512
}
inputs = processor ( text = prompts , videos = video_list , num_frames = 4 , return_tensors = 'pt' )
inputs = { k : v . bfloat16 () if v . dtype == torch . float else v for k , v in inputs . items ()}
inputs = { k : v . to ( model . device ) for k , v in inputs . items ()}
with torch . no_grad ():
res = model . generate ( ** inputs , ** generate_kwargs )
sentence = tokenizer . decode ( res . tolist ()[ 0 ], skip_special_tokens = True )
print ( sentence )
如果您发现该数据集对您的研究有用,请考虑引用我们的论文。
@misc { xu2023youku_mplug ,
title = { Youku-mPLUG: A 10 Million Large-scale Chinese Video-Language Dataset for Pre-training and Benchmarks } ,
author = { Haiyang Xu, Qinghao Ye, Xuan Wu, Ming Yan, Yuan Miao, Jiabo Ye, Guohai Xu, Anwen Hu, Yaya Shi, Chenliang Li, Qi Qian, Que Maofei, Ji Zhang, Xiao Zeng, Fei Huang } ,
year = { 2023 } ,
eprint = { 2306.04362 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}