基于主动健康的主动性、预防性、精确性、个性化、共建共享、自律性六大特征,华南理工大学未来技术学院-广东省数字孪生人重点实验室开源了中文领域生活空间主动健康大模型基座ProactiveHealthGPT,包括:
我们期望,生活空间主动健康大模型基座ProactiveHealthGPT 可以帮助学术界加速大模型在慢性病、心理咨询等主动健康领域的研究与应用。本项目为 生活空间健康大模型扁鹊(BianQue) 。
我们经过调研发现,在健康领域,用户通常不会在一轮交互当中清晰地描述自己的问题,而当前常见的开源医疗问答模型(例如:ChatDoctor、本草(HuaTuo,原名华驼 )、DoctorGLM、MedicalGPT-zh)侧重于解决单轮用户描述的问题,而忽略了“用户描述可能存在不足”的情况。哪怕是当前大火的ChatGPT也会存在类似的问题:如果用户不强制通过文本描述让ChatGPT采用一问一答的形式,ChatGPT也偏向于针对用户的描述,迅速给出它认为合适的建议和方案。然而,实际的医生与用户交谈往往会存在“医生根据用户当前的描述进行持续多轮的询问”。并且医生在最后根据用户提供的信息综合给出建议,如下图所示。我们把医生不断问询的过程定义为 询问链(CoQ, Chain of Questioning) ,当模型处于询问链阶段,其下一个问题通常由对话上下文历史决定。
我们结合当前开源的中文医疗问答数据集(MedDialog-CN、IMCS-V2、CHIP-MDCFNPC、MedDG、cMedQA2、Chinese-medical-dialogue-data),分析其中的单轮/多轮特性以及医生问询特性,结合实验室长期自建的生活空间健康对话大数据,构建了千万级别规模的扁鹊健康大数据BianQueCorpus。对话数据通过“病人:xxxn医生:xxxn病人:xxxn医生:”的形式统一为一种指令格式,如下图所示。
input: "病人:六岁宝宝拉大便都是一个礼拜或者10天才一次正常吗,要去医院检查什么项目n医生:您好n病人:六岁宝宝拉大便都是一个礼拜或者10天才一次正常吗,要去医院检查什么项目n医生:宝宝之前大便什么样呢?多久一次呢n病人:一般都是一个礼拜,最近这几个月都是10多天n医生:大便干吗?n病人:每次10多天拉的很多n医生:"
target: "成形还是不成形呢?孩子吃饭怎么样呢?"
训练数据当中混合了大量target文本为医生问询的内容而非直接的建议,这将有助于提升AI模型的问询能力。
cd ~
git clone https://github.com/scutcyr/BianQue.git
cd BianQue
conda env create -n proactivehealthgpt_py38 --file proactivehealthgpt_py38.yml
conda activate proactivehealthgpt_py38
pip install cpm_kernels
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
cd BianQue
conda create -n proactivehealthgpt_py38 python=3.8
conda activate proactivehealthgpt_py38
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install -r requirements.txt
pip install rouge_chinese nltk jieba datasets
# 以下安装为了运行demo
pip install streamlit
pip install streamlit_chat
【补充】Windows下配置CUDA-11.6:下载并且安装CUDA-11.6、下载cudnn-8.4.0,解压并且复制其中的文件到CUDA-11.6对应的路径,参考:win11下利用conda进行pytorch安装-cuda11.6-泛用安装思路
在Python当中调用BianQue-2.0模型:
import torch
from transformers import AutoModel, AutoTokenizer
# GPU设置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载模型与tokenizer
model_name_or_path = 'scutcyr/BianQue-2'
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True).half()
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
# 单轮对话调用模型的chat函数
user_input = "我的宝宝发烧了,怎么办?"
input_text = "病人:" + user_input + "n医生:"
response, history = model.chat(tokenizer, query=input_text, history=None, max_length=2048, num_beams=1, do_sample=True, top_p=0.75, temperature=0.95, logits_processor=None)
# 多轮对话调用模型的chat函数
# 注意:本项目使用"n病人:"和"n医生:"划分不同轮次的对话历史
# 注意:user_history比bot_history的长度多1
user_history = ['你好', '我最近失眠了']
bot_history = ['我是利用人工智能技术,结合大数据训练得到的智能医疗问答模型扁鹊,你可以向我提问。']
# 拼接对话历史
context = "n".join([f"病人:{user_history[i]}n医生:{bot_history[i]}" for i in range(len(bot_history))])
input_text = context + "n病人:" + user_history[-1] + "n医生:"
response, history = model.chat(tokenizer, query=input_text, history=None, max_length=2048, num_beams=1, do_sample=True, top_p=0.75, temperature=0.95, logits_processor=None)
本项目提供了bianque_v2_app.py作为BianQue-2.0模型的使用示例,通过以下命令即可开启服务,然后,通过http://<your_ip>:9005访问。
streamlit run bianque_v2_app.py --server.port 9005
特别地,在bianque_v2_app.py当中, 可以修改以下代码更换指定的显卡:
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
对于Windows单显卡用户,需要修改为:os.environ['CUDA_VISIBLE_DEVICES'] = '0'
,否则会报错!
可以通过更改以下代码指定模型路径为本地路径:
model_name_or_path = "scutcyr/BianQue-2"
我们还提供了bianque_v1_app.py作为BianQue-1.0模型的使用示例,以及bianque_v1_v2_app.py作为BianQue-1.0模型和BianQue-2.0模型的联合使用示例。
基于扁鹊健康大数据BianQueCorpus,我们选择了 ChatGLM-6B 作为初始化模型,经过全量参数的指令微调训练得到了新一代BianQue【BianQue-2.0】。与扁鹊-1.0模型不同的是,扁鹊-2.0扩充了药品说明书指令、医学百科知识指令以及ChatGPT蒸馏指令等数据,强化了模型的建议与知识查询能力。以下为两个测试样例。
通过以下命令实现联合使用扁鹊-2.0与扁鹊-1.0构建主动健康服务:
streamlit run bianque_v1_v2_app.py --server.port 9005
以下为应用例子:前面若干轮为经过扁鹊-1.0模型进行问询的过程,最后一轮回复为经过扁鹊-2.0模型的回答。
扁鹊-1.0(BianQue-1.0) 是一个经过指令与多轮问询对话联合微调的医疗对话大模型。我们经过调研发现,在医疗领域,往往医生需要通过多轮问询才能进行决策,这并不是单纯的“指令-回复”模式。用户在咨询医生时,往往不会在最初就把完整的情况告知医生,因此医生需要不断进行询问,最后才能进行诊断并给出合理的建议。基于此,我们构建了 扁鹊-1.0(BianQue-1.0) ,拟在 强化AI系统的问询能力 ,从而达到模拟医生问诊的过程。我们把这种能力定义为“望闻问切”当中的“问”。综合考虑当前中文语言模型架构、参数量以及所需要的算力,我们采用了ClueAI/ChatYuan-large-v2作为基准模型,在8张 NVIDIA RTX 4090显卡上微调了1个epoch得到扁鹊-1.0(BianQue-1.0),用于训练的中文医疗问答指令与多轮问询对话混合数据集包含了超过900万条样本,这花费了大约16天的时间完成一个epoch的训练。我们将计划围绕扁鹊模型的“望闻问切”能力,结合医学专家知识、多模态技术、多生理信号计算等,进行多个版本的模型迭代研究。扁鹊(BianQue)模型欢迎你的贡献!我们鼓励你在 BianQue GitHub 页面报告问题、贡献 PR 并参与讨论。我们期待与更多的高校、医院、研究实验室、公司等进行合作,共同开展下一代扁鹊模型研究。对于此类需求(以及其他不适合在 GitHub 上提出的需求),请直接发送电子邮件至 [email protected]。
“望闻问切”四诊法由扁鹊发明。“四诊法”(望、闻、问、切),是中医诊病的基本方法。其中,“问”的能力可以被建模到语言模型当中。我们把AI模型的“问”能力定义为:
“问”能力:AI模型能够根据病人输入的信息,结合医学知识来进行恰当的问询,并且结合进一步的问询得到的病人的信息,给出“合适的诊断或建议”。“问”的过程通常是一个多轮对话过程。
以下是2个简单的例子:
例子1
用户:我最近感觉全身疲惫
扁鹊-1.0:是劳累了,还是熬夜了?
用户:这周都在熬夜赶论文
扁鹊-1.0:嗯,熬夜容易引起各种不适,如头晕、乏力、失眠、多梦等,多休息,可以口服谷维素、维生素B1和安神补脑液,避免熬夜。
例子2
用户:我最近经常失眠
扁鹊-1.0:失眠多久了?
用户:两周了
扁鹊-1.0:睡眠怎么样?
用户:上床几小时才睡得着
扁鹊-1.0:可以口服一些药物
用户:有具体推荐吗
扁鹊-1.0:需要先检查一下
用户:那我需要做什么检查?
扁鹊-1.0:心电图
import os
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = T5Tokenizer.from_pretrained("scutcyr/BianQue-1.0")
model = T5ForConditionalGeneration.from_pretrained("scutcyr/BianQue-1.0")
model = model.to(device)
def preprocess(text):
text = text.replace("n", "\n").replace("t", "\t")
return text
def postprocess(text):
return text.replace("\n", "n").replace("\t", "t")
def answer(user_history, bot_history, sample=True, top_p=1, temperature=0.7):
'''sample:是否抽样。生成任务,可以设置为True;
top_p:0-1之间,生成的内容越多样
max_new_tokens=512 lost...'''
if len(bot_history)>0:
context = "n".join([f"病人:{user_history[i]}n医生:{bot_history[i]}" for i in range(len(bot_history))])
input_text = context + "n病人:" + user_history[-1] + "n医生:"
else:
input_text = "病人:" + user_history[-1] + "n医生:"
return "我是利用人工智能技术,结合大数据训练得到的智能医疗问答模型扁鹊,你可以向我提问。"
input_text = preprocess(input_text)
print(input_text)
encoding = tokenizer(text=input_text, truncation=True, padding=True, max_length=768, return_tensors="pt").to(device)
if not sample:
out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, num_beams=1, length_penalty=0.6)
else:
out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, do_sample=True, top_p=top_p, temperature=temperature, no_repeat_ngram_size=3)
out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True)
print('医生: '+postprocess(out_text[0]))
return postprocess(out_text[0])
answer_text = answer(user_history=["你好!",
"我最近经常失眠",
"两周了",
"上床几小时才睡得着"],
bot_history=["我是利用人工智能技术,结合大数据训练得到的智能医疗问答模型扁鹊,你可以向我提问。",
"失眠多久了?",
"睡眠怎么样?"])
conda env create -n bianque_py38 --file py38_conda_env.yml
conda activate bianque_py38
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
cd scripts
bash run_train_model_bianque.sh
扁鹊-1.0(BianQue-1.0) 当前仅经过1个epoch的训练,尽管模型具备了一定的医疗问询能力,但其仍然存在以下局限:
**扁鹊-2.0(BianQue-2.0)**使用了ChatGLM-6B 模型的权重,需要遵循其MODEL_LICENSE,因此,本项目仅可用于您的非商业研究目的。
本项目由华南理工大学未来技术学院 广东省数字孪生人重点实验室发起,得到了华南理工大学信息网络工程研究中心、电子与信息学院等学院部门的支撑,同时致谢广东省妇幼保健院、广州市妇女儿童医疗中心、中山大学附属第三医院、合肥综合性国家科学中心人工智能研究院等合作单位。
同时,我们感谢以下媒体或公众号对本项目的报道(排名不分先后):
媒体报道 人民日报、中国网、光明网、TOM科技、未来网、大众网、中国发展报道网、中国日报网、新华资讯网、中华网、今日头条、搜狐、腾讯新闻、网易新闻、中国资讯网、中国传播网、中国都市报道网、中华城市网
公众号 广东实验室建设、智能语音新青年、深度学习与NLP、AINLP
@misc{chen2023bianque,
title={BianQue: Balancing the Questioning and Suggestion Ability of Health LLMs with Multi-turn Health Conversations Polished by ChatGPT},
author={Yirong Chen and Zhenyu Wang and Xiaofen Xing and huimin zheng and Zhipei Xu and Kai Fang and Junhong Wang and Sihang Li and Jieling Wu and Qi Liu and Xiangmin Xu},
year={2023},
eprint={2310.15896},
archivePrefix={arXiv},
primaryClass={cs.CL}
}