? 利用有趣的中文语料库qingyun,由@Doragd 同学编写的中文聊天机器人:snowman:
尽管她不是那么完善:muscle:,不是那么出色:paw_prints:
但她是由我自己coding出来的:sparkling_heart: ,所以
希望大家能够多多star支持 这个NLP初学者?和他的朋友? 小智
这个项目实际是软件工程课程设计的子模块。我们的目标是开发一个智能客服工单处理系统。
智能客服工单系统实际的工作流程是:当人向系统发出提问时,系统首先去知识库中查找是否存在相关问题,如果有,则返回问题的答案,此时如何人不满意,则可以直接提交工单。如果知识库中不存在,则调用这个聊天机器人进行自动回复。
该系统服务的场景类似腾讯云的客服系统,客户多是来咨询相关问题的(云服务器,域名等),所以知识库也是有关云服务器,域名等的咨询,故障处理的 (问题,答案) 集合。
系统的前端界面和前后端消息交互由另一个同学@adjlyadv 完成,主要采用React+Django方式。
@Doragd 同学负责的是知识库的获取和聊天机器人的编写,训练,测试。这个repo的内容也是关于这个的。
│ .gitignore
│ config.py #模型配置参数
│ corpus.pth #已经过处理的数据集
│ dataload.py #dataloader
│ datapreprocess.py #数据预处理
│ LICENSE
│ main.py
│ model.py
│ README.md
│ requirements.txt
│ train_eval.py #训练和验证,测试
│
├─checkpoints
│ chatbot_0509_1437 #已经训练好的模型
│
├─clean_chat_corpus
│ qingyun.tsv #语料库
│
├─QA_data
│ QA.db #知识库
│ QA_test.py #使用知识库时调用
│ stop_words.txt #停用词
│ __init__.py
│
└─utils
beamsearch.py #to do 未完工
greedysearch.py #贪婪搜索,用于测试
__init__.py
安装依赖
$ pip install -r requirements.txt
$ python datapreprocess.py
对语料库进行预处理,产生corpus.pth (这里已经上传好corpus.pth, 故此步可以省略)
可修改参数:
# datapreprocess.py
corpus_file = 'clean_chat_corpus/qingyun.tsv' #未处理的对话数据集
max_voc_length = 10000 #字典最大长度
min_word_appear = 10 #加入字典的词的词频最小值
max_sentence_length = 50 #最大句子长度
save_path = 'corpus.pth' #已处理的对话数据集保存路径
使用知识库时, 需要传入参数use_QA_first=True
此时,对于输入的字符串,首先在知识库中匹配最佳的问题和答案,并返回。找不到时,才调用聊天机器人自动生成回复。
这里的知识库是爬取整理的腾讯云官方文档中的常见问题和答案,100条,仅用于测试!
$ python main.py chat --use_QA_first=True
由于课程设计需要,加入了腾讯云的问题答案对,但对于聊天机器人这个项目来说是无关紧要的,所以一般使用时,use_QA_first=False
,该参数默认为True
$ python main.py chat --use_QA_first=False
$ python main.py chat
exit
, quit
, q
均可在config.py
文件中说明
需要传入新的参数时,只需要命令行传入即可,形如
$ python main.py chat --model_ckpt='checkpoints/chatbot_0509_1437' --use_QA_first=False
上面的命令指出了加载已训练模型的路径和是否使用知识库
语料名称 | 语料数量 | 语料来源说明 | 语料特点 | 语料样例 | 是否已分词 |
---|---|---|---|---|---|
qingyun(青云语料) | 10W | 某聊天机器人交流群 | 相对不错,生活化 | Q:看来你很爱钱 A:噢是吗?那么你也差不多了 | 否 |
$ python train_eval.py train [--options]
定量评估部分暂时还没写好,应该采用困惑度来衡量,目前只能生成句子,人为评估质量
$ python train_eval.py eval [--options]