该存储库包含我们的论文《Grounding Large Language Models with Online Reinforcement Learning》所使用的代码。
您可以在我们的网站上找到更多信息。
我们使用GLAM方法对 BabyAI-Text 中的法学硕士知识进行功能性基础:
我们发布了 BabyAI-Text 环境以及执行实验的代码(训练代理并评估其性能)。我们依靠 Lamorel 图书馆来使用法学硕士。
我们的存储库的结构如下:
? Grounding_LLMs_with_online_RL
┣babyai babyai-text
我们的BabyAI-Text环境
┣ experiments
——我们的实验代码
┃ ┣ agents
——执行我们所有的代理
┃ ┃ ┣ bot
--利用 BabyAI 机器人的机器人代理
┃ ┃ ┣ random_agent
--代理均匀随机播放
┃ ┃ ┣ drrn
-- DRRN 代理来自这里
┃ ┃ ┣ ppo
--使用 PPO 的代理
┃ ┃ ┃ ┣ symbolic_ppo_agent.py
-- SymbolicPPO 改编自 BabyAI 的 PPO
┃ ┃ ┃ ┗ llm_ppo_agent.py
--我们的 LLM 代理基于 PPO
┃ ┣ configs
--我们实验的 Lamorel 配置
┃ ┣ slurm
--在 SLURM 集群上启动我们的实验的 utils 脚本
┃ ┣ campaign
——用于启动我们实验的 SLURM 脚本
┃ ┣ train_language_agent.py
--使用 BabyAI-Text(LLM 和 DRRN)训练代理 -> 包含我们对 LLM 的 PPO 损失的实现以及 LLM 之上的附加头
┃ ┣ train_symbolic_ppo.py
--在 BabyAI 上训练 SymbolicPPO(使用 BabyAI-Text 的任务)
┃ ┣ post-training_tests.py
--经过训练的智能体的泛化测试
┃ ┣ test_results.py
--格式化结果的实用程序
┃ ┗ clm_behavioral-cloning.py
—使用轨迹对 LLM 执行行为克隆的代码
conda create -n dlp python=3.10.8; conda activate dlp
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt
安装 BabyAI-Text :请参阅babyai-text
包中的安装详细信息
安装拉莫雷尔
git clone https://github.com/flowersteam/lamorel.git; cd lamorel/lamorel; pip install -e .; cd ../..
请与我们的配置一起使用 Lamorel。您可以在活动中找到我们的培训脚本示例。
要在 BabyAI-Text 环境中训练语言模型,必须使用train_language_agent.py
文件。该脚本(使用 Lamorel 启动)使用以下配置条目:
rl_script_args :
seed : 1
number_envs : 2 # Number of parallel envs to launch (steps will be synchronized, i.e. a step call will return number_envs observations)
num_steps : 1000 # Total number of training steps
max_episode_steps : 3 # Maximum number of steps in a single episode
frames_per_proc : 40 # The number of collected transitions to perform a PPO update will be frames_per_proc*number_envs
discount : 0.99 # Discount factor used in PPO
lr : 1e-6 # Learning rate used to finetune the LLM
beta1 : 0.9 # PPO's hyperparameter
beta2 : 0.999 # PPO's hyperparameter
gae_lambda : 0.99 # PPO's hyperparameter
entropy_coef : 0.01 # PPO's hyperparameter
value_loss_coef : 0.5 # PPO's hyperparameter
max_grad_norm : 0.5 # Maximum grad norm when updating the LLM's parameters
adam_eps : 1e-5 # Adam's hyperparameter
clip_eps : 0.2 # Epsilon used in PPO's losses clipping
epochs : 4 # Number of PPO epochs performed on each set of collected trajectories
batch_size : 16 # Minibatch size
action_space : ["turn_left","turn_right","go_forward","pick_up","drop","toggle"] # Possible actions for the agent
saving_path_logs : ??? # Where to store logs
name_experiment : ' llm_mtrl ' # Useful for logging
name_model : ' T5small ' # Useful for logging
saving_path_model : ??? # Where to store the finetuned model
name_environment : ' BabyAI-MixedTestLocal-v0 ' # BabiAI-Text's environment
load_embedding : true # Whether trained embedding layers should be loaded (useful when lm_args.pretrained=False). Setting both this and use_action_heads to True (lm_args.pretrained=False) creates our NPAE agent.
use_action_heads : false # Whether action heads should be used instead of scoring. Setting both this and use_action_heads to True (lm_args.pretrained=False) creates our NPAE agent.
template_test : 1 # Which prompt template to use to log evolution of action's probability (Section C of our paper). Choices or [1, 2].
nbr_obs : 3 # Number of past observation used in the prompt
对于与语言模型本身相关的配置条目,请参阅Lamorel。
要评估代理(例如经过训练的 LLM、BabyAI 机器人...)在测试任务上的性能,请使用post-training_tests.py
并设置以下配置条目:
rl_script_args :
seed : 1
number_envs : 2 # Number of parallel envs to launch (steps will be synchronized, i.e. a step call will return number_envs observations)
max_episode_steps : 3 # Maximum number of steps in a single episode
action_space : ["turn_left","turn_right","go_forward","pick_up","drop","toggle"] # Possible actions for the agent
saving_path_logs : ??? # Where to store logs
name_experiment : ' llm_mtrl ' # Useful for logging
name_model : ' T5small ' # Useful for logging
saving_path_model : ??? # Where to store the finetuned model
name_environment : ' BabyAI-MixedTestLocal-v0 ' # BabiAI-Text's environment
load_embedding : true # Whether trained embedding layers should be loaded (useful when lm_args.pretrained=False). Setting both this and use_action_heads to True (lm_args.pretrained=False) creates our NPAE agent.
use_action_heads : false # Whether action heads should be used instead of scoring. Setting both this and use_action_heads to True (lm_args.pretrained=False) creates our NPAE agent.
nbr_obs : 3 # Number of past observation used in the prompt
number_episodes : 10 # Number of test episodes
language : ' english ' # Useful to perform the French experiment (Section H4)
zero_shot : true # Whether the zero-shot LLM (i.e. without finetuning should be used)
modified_action_space : false # Whether a modified action space (e.g. different from the one seen during training) should be used
new_action_space : # ["rotate_left","rotate_right","move_ahead","take","release","switch"] # Modified action space
im_learning : false # Whether a LLM produced with Behavioral Cloning should be used
im_path : " " # Path to the LLM learned with Behavioral Cloning
bot : false # Whether the BabyAI's bot agent should be used