toolformer pytorch
0.0.30
Toolformer 的实现,可以使用工具的语言模型,作者:MetaAI
Stability.ai 慷慨赞助工作和开源尖端人工智能研究
Enrico 首次提交了不同的工具,让一切顺利进行!
感谢 ChatGPT 在此存储库中执行所有正则表达式来解析 API 调用的函数和参数。我不擅长正则表达式,所以这是人工智能的巨大帮助(没有任何问题,它是完美的)。
$ pip install toolformer-pytorch
使语言模型了解当前日期和时间的示例用法。
import torch
from toolformer_pytorch import Toolformer , PaLM
# simple calendar api call - function that returns a string
def Calendar ():
import datetime
from calendar import day_name , month_name
now = datetime . datetime . now ()
return f'Today is { day_name [ now . weekday ()] } , { month_name [ now . month ] } { now . day } , { now . year } .'
# prompt for teaching it to use the Calendar function from above
prompt = f"""
Your task is to add calls to a Calendar API to a piece of text.
The API calls should help you get information required to complete the text.
You can call the API by writing "[Calendar()]"
Here are some examples of API calls:
Input: Today is the first Friday of the year.
Output: Today is the first [Calendar()] Friday of the year.
Input: The president of the United States is Joe Biden.
Output: The president of the United States is [Calendar()] Joe Biden.
Input: [input]
Output:
"""
data = [
"The store is never open on the weekend, so today it is closed." ,
"The number of days from now until Christmas is 30" ,
"The current day of the week is Wednesday."
]
# model - here using PaLM, but any nn.Module that returns logits in the shape (batch, seq, num_tokens) is fine
model = PaLM (
dim = 512 ,
depth = 2 ,
heads = 8 ,
dim_head = 64
). cuda ()
# toolformer
toolformer = Toolformer (
model = model ,
model_seq_len = 256 ,
teach_tool_prompt = prompt ,
tool_id = 'Calendar' ,
tool = Calendar ,
finetune = True
)
# invoking this will
# (1) prompt the model with your inputs (data), inserted into [input] tag
# (2) with the sampled outputs, filter out the ones that made proper API calls
# (3) execute the API calls with the `tool` given
# (4) filter with the specialized filter function (which can be used independently as shown in the next section)
# (5) fine-tune on the filtered results
filtered_stats = toolformer ( data )
# then, once you see the 'finetune complete' message
response = toolformer . sample_model_with_api_calls ( "How many days until the next new years?" )
# hopefully you see it invoke the calendar and utilize the response of the api call...
该论文的主要新颖之处在于为指示插入 API 调用的变压器的输出定义了适合度分数。该分数用于过滤采样输出,以微调转换器以进行 API 调用,从而减少其后面的文本的复杂性。
import torch
from toolformer_pytorch import (
Toolformer ,
PaLM ,
filter_tokens_with_api_response
)
# model
palm = PaLM (
dim = 512 ,
num_tokens = 20000 ,
depth = 2 ,
heads = 8 ,
dim_head = 64
). cuda ()
# mock some tokens
mock_start_pos = 512
mock_api_call_length = 10
mock_api_start_id = 19998
mock_api_stop_id = 19999
tokens = torch . randint ( 0 , 20000 , ( 10 , 1024 )). cuda ()
tokens_with_api_response = torch . randint ( 0 , 20000 , ( 10 , 1024 )). cuda ()
tokens_without_api_response = torch . randint ( 0 , 20000 , ( 10 , 1024 )). cuda ()
tokens_with_api_response [:, mock_start_pos ] = mock_api_start_id
tokens_with_api_response [:, mock_start_pos + mock_api_call_length ] = mock_api_stop_id
tokens_without_api_response [:, mock_start_pos ] = mock_api_start_id
tokens_without_api_response [:, mock_start_pos + mock_api_call_length ] = mock_api_stop_id
# filter
filtered_results = filter_tokens_with_api_response (
model = palm ,
tokens = tokens ,
tokens_with_api_response = tokens_with_api_response ,
tokens_without_api_response = tokens_without_api_response ,
filter_threshold = 1. ,
api_start_token_id = mock_api_start_id ,
api_end_token_id = mock_api_stop_id
)
要对语言模型生成的字符串调用工具,请使用invoke_tools
from toolformer_pytorch import invoke_tools
def inc ( i ):
return i + 1
def dec ( i ):
return i - 1
function_registry = dict (
inc = inc ,
dec = dec
)
text = 'make the following api calls: [inc(1)] and [dec(2)] and [ignored(3)]'
invoke_tools ( function_registry , text )
# make the following api calls: [inc(1) → 2] and [dec(2) → 1] and [ignored(3)]
Toolformer
中进行端到端培训Toolformer
实例上训练的最终模型可以使用多个工具调用 - 从批量大小 1 开始,然后逐步增加 @inproceedings { Schick2023ToolformerLM ,
title = { Toolformer: Language Models Can Teach Themselves to Use Tools } ,
author = { Timo Schick and Jane Dwivedi-Yu and Roberto Dessi and Roberta Raileanu and Maria Lomeli and Luke Zettlemoyer and Nicola Cancedda and Thomas Scialom } ,
year = { 2023 }
}
@article { Gao2022PALPL ,
title = { PAL: Program-aided Language Models } ,
author = { Luyu Gao and Aman Madaan and Shuyan Zhou and Uri Alon and Pengfei Liu and Yiming Yang and Jamie Callan and Graham Neubig } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2211.10435 }
}
现实就是,当你不再相信它时,它就不会消失。 ——菲利普·K·迪克。