lambda networks
0.4.0
实施 λ Networks,这是一种新的图像识别方法,在 ImageNet 上达到了 SOTA。新方法利用 λ 层,该层通过将上下文转换为线性函数(称为 lambda)并将这些线性函数分别应用于每个输入来捕获交互。
Yannic Kilcher 的论文评论
$ pip install lambda-networks
全球背景
import torch
from lambda_networks import LambdaLayer
layer = LambdaLayer (
dim = 32 , # channels going in
dim_out = 32 , # channels out
n = 64 , # size of the receptive window - max(height, width)
dim_k = 16 , # key dimension
heads = 4 , # number of heads, for multi-query
dim_u = 1 # 'intra-depth' dimension
)
x = torch . randn ( 1 , 32 , 64 , 64 )
layer ( x ) # (1, 32, 64, 64)
本地化上下文
import torch
from lambda_networks import LambdaLayer
layer = LambdaLayer (
dim = 32 ,
dim_out = 32 ,
r = 23 , # the receptive field for relative positional encoding (23 x 23)
dim_k = 16 ,
heads = 4 ,
dim_u = 4
)
x = torch . randn ( 1 , 32 , 64 , 64 )
layer ( x ) # (1, 32, 64, 64)
为了好玩,您还可以按如下方式导入它
from lambda_networks import λLayer
Shinel94 添加了 Keras 实现!此存储库不会正式支持它,因此请将代码复制/粘贴到./lambda_networks/tfkeras.py
下,或者确保在运行以下命令之前安装tensorflow
和keras
。
import tensorflow as tf
from lambda_networks . tfkeras import LambdaLayer
layer = LambdaLayer (
dim_out = 32 ,
r = 23 ,
dim_k = 16 ,
heads = 4 ,
dim_u = 1
)
x = tf . random . normal (( 1 , 64 , 64 , 16 )) # channel last format
layer ( x ) # (1, 64, 64, 32)
@inproceedings {
anonymous2021lambdanetworks,
title = { LambdaNetworks: Modeling long-range Interactions without Attention } ,
author = { Anonymous } ,
booktitle = { Submitted to International Conference on Learning Representations } ,
year = { 2021 } ,
url = { https://openreview.net/forum?id=xTJEN-ggl1b } ,
note = { under review }
}