x clip
0.14.4
CLIP 的简洁但完整的实现,具有最近论文中的各种实验改进
$ pip install x-clip
import torch
from x_clip import CLIP
clip = CLIP (
dim_text = 512 ,
dim_image = 512 ,
dim_latent = 512 ,
num_text_tokens = 10000 ,
text_enc_depth = 6 ,
text_seq_len = 256 ,
text_heads = 8 ,
visual_enc_depth = 6 ,
visual_image_size = 256 ,
visual_patch_size = 32 ,
visual_heads = 8 ,
visual_patch_dropout = 0.5 , # patch dropout probability, used in Kaiming He's FLIP to save compute and improve end results - 0.5 is good value, 0.75 on high end is tolerable
use_all_token_embeds = False , # whether to use fine-grained contrastive learning (FILIP)
decoupled_contrastive_learning = True , # use decoupled contrastive learning (DCL) objective function, removing positive pairs from the denominator of the InfoNCE loss (CLOOB + DCL)
extra_latent_projection = True , # whether to use separate projections for text-to-image vs image-to-text comparisons (CLOOB)
use_visual_ssl = True , # whether to do self supervised learning on iages
use_mlm = False , # use masked language learning (MLM) on text (DeCLIP)
text_ssl_loss_weight = 0.05 , # weight for text MLM loss
image_ssl_loss_weight = 0.05 # weight for image self-supervised learning loss
)
# mock data
text = torch . randint ( 0 , 10000 , ( 4 , 256 ))
images = torch . randn ( 4 , 3 , 256 , 256 )
# train
loss = clip (
text ,
images ,
freeze_image_encoder = False , # whether to freeze image encoder if using a pretrained image net, proposed by LiT paper
return_loss = True # needs to be set to True to return contrastive loss
)
loss . backward ()
您还可以传入外部视觉变压器/残差网络。您只需确保图像编码器返回一组格式为batch x seq x dim
的嵌入,并确保将dim_image
正确指定为返回嵌入的维度。下面是使用vit_pytorch
中的视觉转换器的示例
$ pip install vit_pytorch > =0.25.6
import torch
from x_clip import CLIP
from vit_pytorch import ViT
from vit_pytorch . extractor import Extractor
base_vit = ViT (
image_size = 256 ,
patch_size = 32 ,
num_classes = 1000 ,
dim = 512 ,
depth = 6 ,
heads = 16 ,
mlp_dim = 2048 ,
dropout = 0.1 ,
emb_dropout = 0.1
)
vit = Extractor (
base_vit ,
return_embeddings_only = True
)
clip = CLIP (
image_encoder = vit ,
dim_image = 512 , # must be set as the same dimensions as the vision transformer above
dim_text = 512 ,
dim_latent = 512 ,
num_text_tokens = 10000 ,
text_enc_depth = 6 ,
text_seq_len = 256 ,
text_heads = 8
)
text = torch . randint ( 0 , 10000 , ( 4 , 256 ))
images = torch . randn ( 4 , 3 , 256 , 256 )
loss = clip ( text , images , return_loss = True )
loss . backward ()
最后,还可以在外部定义文本转换器。目前,它需要返回包括 CLS 令牌在内的嵌入。
import torch
from x_clip import CLIP , TextTransformer
from vit_pytorch import ViT
from vit_pytorch . extractor import Extractor
base_vit = ViT (
image_size = 256 ,
patch_size = 32 ,
num_classes = 1000 ,
dim = 512 ,
depth = 6 ,
heads = 16 ,
mlp_dim = 2048 ,
dropout = 0.1 ,
emb_dropout = 0.1
)
image_encoder = Extractor (
base_vit ,
return_embeddings_only = True
)
text_encoder = TextTransformer (
dim = 512 ,
num_tokens = 10000 ,
max_seq_len = 256 ,
depth = 6 ,
heads = 8
)
clip = CLIP (
image_encoder = image_encoder ,
text_encoder = text_encoder ,
dim_image = 512 ,
dim_text = 512 ,
dim_latent = 512
)
text = torch . randint ( 0 , 10000 , ( 4 , 256 ))
images = torch . randn ( 4 , 3 , 256 , 256 )
loss = clip ( text , images , return_loss = True )
loss . backward ()
该存储库还支持多视图对比学习损失,如 DeCLIP 中提出的。只需传入增强文本和/或增强图像,它就会自动计算,并通过初始化时设置的multiview_loss_weight
进行加权。
前任。
import torch
from x_clip import CLIP , TextTransformer
from vit_pytorch import ViT
from vit_pytorch . extractor import Extractor
base_vit = ViT (
image_size = 256 ,
patch_size = 32 ,
num_classes = 1000 ,
dim = 512 ,
depth = 6 ,
heads = 16 ,
mlp_dim = 2048 ,
dropout = 0.1 ,
emb_dropout = 0.1
)
image_encoder = Extractor (
base_vit ,
return_embeddings_only = True
)
text_encoder = TextTransformer (
dim = 512 ,
num_tokens = 10000 ,
max_seq_len = 256 + 1 ,
depth = 6 ,
heads = 8
)
clip = CLIP (
image_encoder = image_encoder ,
text_encoder = text_encoder ,
dim_image = 512 ,
dim_text = 512 ,
dim_latent = 512 ,
extra_latent_projection = True ,
multiview_loss_weight = 0.1 # weight multiview contrastive loss by 0.1
)
text = torch . randint ( 0 , 10000 , ( 4 , 256 ))
images = torch . randn ( 4 , 3 , 256 , 256 )
aug_text = torch . randint ( 0 , 10000 , ( 4 , 256 )) # augmented text (backtranslation or EDA), same dimensions as text
aug_images = torch . randn ( 4 , 3 , 256 , 256 ) # augmented images, same dimension as images above
loss = clip (
text ,
images ,
aug_text = aug_text , # pass in augmented texts
aug_image = aug_images , # pass in augmented images
return_loss = True ,
freeze_image_encoder = True
)
loss . backward ()
您甚至可以发送多个增强文本或图像
# ...
aug_texts = (
torch . randint ( 0 , 10000 , ( 4 , 256 )),
torch . randint ( 0 , 10000 , ( 4 , 256 )),
)
aug_images = (
torch . randn ( 4 , 3 , 256 , 256 ),
torch . randn ( 4 , 3 , 256 , 256 ),
)
loss = clip (
text ,
images ,
aug_text = aug_texts ,
aug_image = aug_images ,
return_loss = True ,
freeze_image_encoder = True
)
loss . backward ()
您可以通过visual_ssl
关键字传入您自己的视觉自监督学习模块,如下所示
import torch
from x_clip import CLIP
from x_clip . visual_ssl import SimSiam
from vit_pytorch import ViT
from vit_pytorch . extractor import Extractor
base_vit = ViT (
image_size = 256 ,
patch_size = 32 ,
num_classes = 1000 ,
dim = 512 ,
depth = 6 ,
heads = 16 ,
mlp_dim = 2048 ,
dropout = 0.1 ,
emb_dropout = 0.1
)
image_encoder = Extractor (
base_vit ,
return_embeddings_only = True
)
visual_ssl = SimSiam ( # SimSiam defined externally - needs to be a module that accepts an image of the same dimensions as CLIP and returns a scalar loss
image_encoder ,
image_size = 256 ,
hidden_layer = - 1
)
clip = CLIP (
image_encoder = image_encoder ,
dim_image = 512 ,
dim_text = 512 ,
dim_latent = 512 ,
use_mlm = True ,
visual_ssl = visual_ssl , # SSL module passed into CLIP
use_all_token_embeds = False ,
extra_latent_projection = False ,
mlm_random_token_prob = 0.1
)
text = torch . randint ( 0 , 10000 , ( 4 , 256 ))
images = torch . randn ( 4 , 3 , 256 , 256 )
loss = clip ( text , images , return_loss = True )
loss . backward ()
@misc { radford2021learning ,
title = { Learning Transferable Visual Models From Natural Language Supervision } ,
author = { Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever } ,
year = { 2021 } ,
eprint = { 2103.00020 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { yao2021filip ,
title = { FILIP: Fine-grained Interactive Language-Image Pre-Training } ,
author = { Lewei Yao and Runhui Huang and Lu Hou and Guansong Lu and Minzhe Niu and Hang Xu and Xiaodan Liang and Zhenguo Li and Xin Jiang and Chunjing Xu } ,
year = { 2021 } ,
eprint = { 2111.07783 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { fürst2021cloob ,
title = { CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP } ,
author = { Andreas Fürst and Elisabeth Rumetshofer and Viet Tran and Hubert Ramsauer and Fei Tang and Johannes Lehner and David Kreil and Michael Kopp and Günter Klambauer and Angela Bitto-Nemling and Sepp Hochreiter } ,
year = { 2021 } ,
eprint = { 2110.11316 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
}
@misc { yeh2021decoupled ,
title = { Decoupled Contrastive Learning } ,
author = { Chun-Hsiao Yeh and Cheng-Yao Hong and Yen-Chi Hsu and Tyng-Luh Liu and Yubei Chen and Yann LeCun } ,
year = { 2021 } ,
eprint = { 2110.06848 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
}
@misc { zhai2021lit ,
title = { LiT: Zero-Shot Transfer with Locked-image Text Tuning } ,
author = { Xiaohua Zhai and Xiao Wang and Basil Mustafa and Andreas Steiner and Daniel Keysers and Alexander Kolesnikov and Lucas Beyer } ,
year = { 2021 } ,
eprint = { 2111.07991 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { li2021supervision ,
title = { Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm } ,
author = { Yangguang Li and Feng Liang and Lichen Zhao and Yufeng Cui and Wanli Ouyang and Jing Shao and Fengwei Yu and Junjie Yan } ,
year = { 2021 } ,
eprint = { 2110.05208 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@Article { mu2021slip ,
author = { Norman Mu and Alexander Kirillov and David Wagner and Saining Xie } ,
title = { SLIP: Self-supervision meets Language-Image Pre-training } ,
journal = { arXiv preprint arXiv:2112.12750 } ,
year = { 2021 } ,
}
@misc { su2021roformer ,
title = { RoFormer: Enhanced Transformer with Rotary Position Embedding } ,
author = { Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu } ,
year = { 2021 } ,
eprint = { 2104.09864 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}
@inproceedings { anonymous2022normformer ,
title = { NormFormer: Improved Transformer Pretraining with Extra Normalization } ,
author = { Anonymous } ,
booktitle = { Submitted to The Tenth International Conference on Learning Representations } ,
year = { 2022 } ,
url = { https://openreview.net/forum?id=GMYWzWztDx5 } ,
note = { under review }
}
@inproceedings { Li2022ScalingLP ,
title = { Scaling Language-Image Pre-training via Masking } ,
author = { Yanghao Li and Haoqi Fan and Ronghang Hu and Christoph Feichtenhofer and Kaiming He } ,
year = { 2022 }
}
@article { Liu2022PatchDropoutEV ,
title = { PatchDropout: Economizing Vision Transformers Using Patch Dropout } ,
author = { Yue Liu and Christos Matsoukas and Fredrik Strand and Hossein Azizpour and Kevin Smith } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2208.07220 }
}
@misc { shi2023enhance ,
title = { Enhance audio generation controllability through representation similarity regularization } ,
author = { Yangyang Shi and Gael Le Lan and Varun Nagaraja and Zhaoheng Ni and Xinhao Mei and Ernie Chang and Forrest Iandola and Yang Liu and Vikas Chandra } ,
year = { 2023 } ,
eprint = { 2309.08773 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.SD }
}