gollm
是一个GO包,旨在帮助您构建自己的AI Golems。就像神秘的传奇人物被神圣的单词栩栩如生一样, gollm
可以使用大语言模型(LLMS)的力量使您能够将生命带入您的AI创作中。该软件包简化了与各种LLM提供商的交互,并为AI工程师和开发人员提供了自己的数字仆人,为AI工程师和开发人员提供了统一,灵活和强大的界面。
文档
ChainOfThought
预构建功能进行复杂的推理任务。gollm
可以处理各种AI驱动的任务,包括:
ChainOfThought
函数逐步分析复杂问题。go get github.com/teilomillet/gollm
package main
import (
"context"
"fmt"
"log"
"os"
"github.com/teilomillet/gollm"
)
func main () {
// Load API key from environment variable
apiKey := os . Getenv ( "OPENAI_API_KEY" )
if apiKey == "" {
log . Fatalf ( "OPENAI_API_KEY environment variable is not set" )
}
// Create a new LLM instance with custom configuration
llm , err := gollm . NewLLM (
gollm . SetProvider ( "openai" ),
gollm . SetModel ( "gpt-4o-mini" ),
gollm . SetAPIKey ( apiKey ),
gollm . SetMaxTokens ( 200 ),
gollm . SetMaxRetries ( 3 ),
gollm . SetRetryDelay ( time . Second * 2 ),
gollm . SetLogLevel ( gollm . LogLevelInfo ),
)
if err != nil {
log . Fatalf ( "Failed to create LLM: %v" , err )
}
ctx := context . Background ()
// Create a basic prompt
prompt := gollm . NewPrompt ( "Explain the concept of 'recursion' in programming." )
// Generate a response
response , err := llm . Generate ( ctx , prompt )
if err != nil {
log . Fatalf ( "Failed to generate text: %v" , err )
}
fmt . Printf ( "Response: n %s n " , response )
}
## Quick Reference
Here 's a quick reference guide for the most commonly used functions and options in the `gollm` package :
### LLM Creation and Configuration
`` `go
llm, err := gollm.NewLLM(
gollm.SetProvider("openai"),
gollm.SetModel("gpt-4"),
gollm.SetAPIKey("your-api-key"),
gollm.SetMaxTokens(100),
gollm.SetTemperature(0.7),
gollm.SetMemory(4096),
)
prompt := gollm . NewPrompt ( "Your prompt text here" ,
gollm . WithContext ( "Additional context" ),
gollm . WithDirectives ( "Be concise" , "Use examples" ),
gollm . WithOutput ( "Expected output format" ),
gollm . WithMaxLength ( 300 ),
)
response , err := llm . Generate ( ctx , prompt )
response , err := tools . ChainOfThought ( ctx , llm , "Your question here" )
optimizer := optimizer . NewPromptOptimizer ( llm , initialPrompt , taskDescription ,
optimizer . WithCustomMetrics ( /* custom metrics */ ),
optimizer . WithRatingSystem ( "numerical" ),
optimizer . WithThreshold ( 0.8 ),
)
optimizedPrompt , err := optimizer . OptimizePrompt ( ctx )
results , err := tools . CompareModels ( ctx , promptText , validateFunc , configs ... )
gollm
软件包提供了一系列高级功能来增强您的AI应用程序:
创建具有多个组件的复杂提示:
prompt := gollm . NewPrompt ( "Explain the concept of recursion in programming." ,
gollm . WithContext ( "The audience is beginner programmers." ),
gollm . WithDirectives (
"Use simple language and avoid jargon." ,
"Provide a practical example." ,
"Explain potential pitfalls and how to avoid them." ,
),
gollm . WithOutput ( "Structure your response with sections: Definition, Example, Pitfalls, Best Practices." ),
gollm . WithMaxLength ( 300 ),
)
response , err := llm . Generate ( ctx , prompt )
if err != nil {
log . Fatalf ( "Failed to generate explanation: %v" , err )
}
fmt . Printf ( "Explanation of Recursion: n %s n " , response )
使用ChainOfThought
功能进行逐步推理:
question := "What is the result of 15 * 7 + 22?"
response , err := tools . ChainOfThought ( ctx , llm , question )
if err != nil {
log . Fatalf ( "Failed to perform chain of thought: %v" , err )
}
fmt . Printf ( "Chain of Thought: n %s n " , response )
直接从文件加载示例:
examples , err := utils . ReadExamplesFromFile ( "examples.txt" )
if err != nil {
log . Fatalf ( "Failed to read examples: %v" , err )
}
prompt := gollm . NewPrompt ( "Generate a similar example:" ,
gollm . WithExamples ( examples ... ),
)
response , err := llm . Generate ( ctx , prompt )
if err != nil {
log . Fatalf ( "Failed to generate example: %v" , err )
}
fmt . Printf ( "Generated Example: n %s n " , response )
创建可重复使用的提示模板,以始终如一的提示生成:
// Create a new prompt template
template := gollm . NewPromptTemplate (
"AnalysisTemplate" ,
"A template for analyzing topics" ,
"Provide a comprehensive analysis of {{.Topic}}. Consider the following aspects: n " +
"1. Historical context n " +
"2. Current relevance n " +
"3. Future implications" ,
gollm . WithPromptOptions (
gollm . WithDirectives (
"Use clear and concise language" ,
"Provide specific examples where appropriate" ,
),
gollm . WithOutput ( "Structure your analysis with clear headings for each aspect." ),
),
)
// Use the template to create a prompt
data := map [ string ] interface {}{
"Topic" : "artificial intelligence in healthcare" ,
}
prompt , err := template . Execute ( data )
if err != nil {
log . Fatalf ( "Failed to execute template: %v" , err )
}
// Generate a response using the created prompt
response , err := llm . Generate ( ctx , prompt )
if err != nil {
log . Fatalf ( "Failed to generate response: %v" , err )
}
fmt . Printf ( "Analysis: n %s n " , response )
确保您的LLM输出为有效的JSON格式:
prompt := gollm . NewPrompt ( "Analyze the pros and cons of remote work." ,
gollm . WithOutput ( "Respond in JSON format with 'topic', 'pros', 'cons', and 'conclusion' fields." ),
)
response , err := llm . Generate ( ctx , prompt , gollm . WithJSONSchemaValidation ())
if err != nil {
log . Fatalf ( "Failed to generate valid analysis: %v" , err )
}
var result AnalysisResult
if err := json . Unmarshal ([] byte ( response ), & result ); err != nil {
log . Fatalf ( "Failed to parse response: %v" , err )
}
fmt . Printf ( "Analysis: %+v n " , result )
使用PromptOptimizer
自动完善并改善您的提示:
initialPrompt := gollm . NewPrompt ( "Write a short story about a robot learning to love." )
taskDescription := "Generate a compelling short story that explores the theme of artificial intelligence developing emotions."
optimizerInstance := optimizer . NewPromptOptimizer (
llm ,
initialPrompt ,
taskDescription ,
optimizer . WithCustomMetrics (
optimizer. Metric { Name : "Creativity" , Description : "How original and imaginative the story is" },
optimizer. Metric { Name : "Emotional Impact" , Description : "How well the story evokes feelings in the reader" },
),
optimizer . WithRatingSystem ( "numerical" ),
optimizer . WithThreshold ( 0.8 ),
optimizer . WithVerbose (),
)
optimizedPrompt , err := optimizerInstance . OptimizePrompt ( ctx )
if err != nil {
log . Fatalf ( "Optimization failed: %v" , err )
}
fmt . Printf ( "Optimized Prompt: %s n " , optimizedPrompt . Input )
比较来自不同LLM提供商或模型的响应:
configs := [] * gollm. Config {
{
Provider : "openai" ,
Model : "gpt-4o-mini" ,
APIKey : os . Getenv ( "OPENAI_API_KEY" ),
MaxTokens : 500 ,
},
{
Provider : "anthropic" ,
Model : "claude-3-5-sonnet-20240620" ,
APIKey : os . Getenv ( "ANTHROPIC_API_KEY" ),
MaxTokens : 500 ,
},
{
Provider : "groq" ,
Model : "llama-3.1-70b-versatile" ,
APIKey : os . Getenv ( "GROQ_API_KEY" ),
MaxTokens : 500 ,
},
}
promptText := "Tell me a joke about programming. Respond in JSON format with 'setup' and 'punchline' fields."
validateJoke := func ( joke map [ string ] interface {}) error {
if joke [ "setup" ] == "" || joke [ "punchline" ] == "" {
return fmt . Errorf ( "joke must have both a setup and a punchline" )
}
return nil
}
results , err := tools . CompareModels ( context . Background (), promptText , validateJoke , configs ... )
if err != nil {
log . Fatalf ( "Error comparing models: %v" , err )
}
fmt . Println ( tools . AnalyzeComparisonResults ( results ))
使内存能够维护多个交互的上下文:
llm , err := gollm . NewLLM (
gollm . SetProvider ( "openai" ),
gollm . SetModel ( "gpt-3.5-turbo" ),
gollm . SetAPIKey ( os . Getenv ( "OPENAI_API_KEY" )),
gollm . SetMemory ( 4096 ), // Enable memory with a 4096 token limit
)
if err != nil {
log . Fatalf ( "Failed to create LLM: %v" , err )
}
ctx := context . Background ()
// First interaction
prompt1 := gollm . NewPrompt ( "What's the capital of France?" )
response1 , err := llm . Generate ( ctx , prompt1 )
if err != nil {
log . Fatalf ( "Failed to generate response: %v" , err )
}
fmt . Printf ( "Response 1: %s n " , response1 )
// Second interaction, referencing the first
prompt2 := gollm . NewPrompt ( "What's the population of that city?" )
response2 , err := llm . Generate ( ctx , prompt2 )
if err != nil {
log . Fatalf ( "Failed to generate response: %v" , err )
}
fmt . Printf ( "Response 2: %s n " , response2 )
及时工程:
NewPrompt()
与WithContext()
, WithDirectives()
和WithOutput()
之类的选项来创建结构良好的提示。 prompt := gollm . NewPrompt ( "Your main prompt here" ,
gollm . WithContext ( "Provide relevant context" ),
gollm . WithDirectives ( "Be concise" , "Use examples" ),
gollm . WithOutput ( "Specify expected output format" ),
)
使用及时的模板:
PromptTemplate
对象。 template := gollm . NewPromptTemplate (
"CustomTemplate" ,
"A template for custom prompts" ,
"Generate a {{.Type}} about {{.Topic}}" ,
gollm . WithPromptOptions (
gollm . WithDirectives ( "Be creative" , "Use vivid language" ),
gollm . WithOutput ( "Your {{.Type}}:" ),
),
)
利用预构建功能:
ChainOfThought()
。 response , err := tools . ChainOfThought ( ctx , llm , "Your complex question here" )
与示例一起工作:
ReadExamplesFromFile()
从文件中加载示例以进行一致的输出。 examples , err := utils . ReadExamplesFromFile ( "examples.txt" )
if err != nil {
log . Fatalf ( "Failed to read examples: %v" , err )
}
实施结构化输出:
WithJSONSchemaValidation()
一起使用以确保有效的JSON输出。 response , err := llm . Generate ( ctx , prompt , gollm . WithJSONSchemaValidation ())
优化提示:
PromptOptimizer
自动完善提示。 optimizer := optimizer . NewPromptOptimizer ( llm , initialPrompt , taskDescription ,
optimizer . WithCustomMetrics (
optimizer. Metric { Name : "Relevance" , Description : "How relevant the response is to the task" },
),
optimizer . WithRatingSystem ( "numerical" ),
optimizer . WithThreshold ( 0.8 ),
)
比较模型性能:
CompareModels()
评估不同的模型或提供商。 results , err := tools . CompareModels ( ctx , promptText , validateFunc , configs ... )
实现上下文交互的内存:
llm , err := gollm . NewLLM (
gollm . SetProvider ( "openai" ),
gollm . SetModel ( "gpt-3.5-turbo" ),
gollm . SetMemory ( 4096 ),
)
错误处理并进行检索:
llm , err := gollm . NewLLM (
gollm . SetMaxRetries ( 3 ),
gollm . SetRetryDelay ( time . Second * 2 ),
)
安全API密钥处理:
llm , err := gollm . NewLLM (
gollm . SetAPIKey ( os . Getenv ( "OPENAI_API_KEY" )),
)
查看我们的示例目录以获取更多用法示例,包括:
gollm
积极维护并在持续发展中。通过最近的重构,我们简化了代码库,使其更简单,更容易为新贡献者访问。我们欢迎社区的捐款和反馈。
gollm
建立在务实的极简主义和前瞻性简单的哲学上:
构建必要的内容:我们在需要的情况下添加功能,以避免投机性发展。
首先简单:在实现其目的的同时,加法应该很简单。
未来兼容:我们考虑当前的变化如何影响未来的发展。
可读性计数:代码应清楚且不言自明。
模块化设计:每个组件应该做得很好。
我们欢迎与我们的哲学保持一致的贡献!无论您是修复错误,改进文档还是提出新功能,都要感谢您的努力。
开始:
感谢您帮助使gollm
更好!
该项目已根据Apache许可证2.0的许可 - 有关详细信息,请参见许可证文件。