Netspresso 團隊 (Nota Inc.) 第七屆 NVIDIA AI 城市挑戰賽(賽道 1:多攝影機人物追蹤)的官方資料庫
bash ./setup.sh
docker build -t aic2023/track1_nota:latest -f ./Dockerfile .
docker run -it --gpus all -v /path/to/AIC2023_Track1_Nota:/workspace/AIC2023_Track1_Nota aic2023/track1_nota:latest /bin/bash
# extract frames
python3 tools/extract_frames.py --path /path/to/AIC23_Track1_MTMC_Tracking/
確保資料結構如下:
├── AIC2023_Track1_Nota
└── datasets
| ├── S001
| | ├── c001
| | | ├── frame1.jpg
| | | └── ...
| | ├── ...
| | └── map.png
| ├── ...
| └── S022
|
└── pretrained
├── market_mgn_R50-ibn.pth
├── duke_sbs_R101-ibn.pth
├── msmt_agw_S50.pth
├── market_aic_bot_R50.pth
├── yolov8x6.pth
├── yolov8x6_aic.pth
└── yolov8x_aic.pth
運行bash ./run_mcpt.sh
結果文件將保存如下:
├── AIC2023_Track1_Nota
└── results
├── S001.txt
├── ...
└── track1_submission.txt
@InProceedings{Kim_2023_CVPR,
author = {Jeongho Kim, Wooksu Shin, Hancheol Park and Jongwon Baek},
title = {Addressing the Occlusion Problem in Multi-Camera People Tracking with Human Pose Estimation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2023},
}
此儲存庫中發布的多攝影機人員追蹤系統是透過組合多個模組(例如物件偵測器、重新識別模型、多物件追蹤模型)而開發的。不允許將任何修改、新增或新訓練的參數用於組合這些模組的商業用途。然而,未經修改的模組的商業使用是允許在其各自的許可證下進行的。如果您希望將各個模組用於商業用途,您可以參考下面提供的原始儲存庫和授權。
物件偵測器(許可證)連結:Github、許可證
重新識別模型(許可證)連結:Github、License
多目標追蹤模型(許可證)連結:Github、License