r2dii.analysis
r2dii.analysis 0.4.0
這些工具可協助您評估金融投資組合是否符合氣候目標。他們總結了投資組合的關鍵指標(例如產量、排放因子),並根據氣候情境計算目標。他們在 R 中實現了免費軟體「PACTA」(《巴黎協定資本轉型評估》;https://www.transitionmonitor.com/)的最後一步。金融機構使用「PACTA」來研究其資本配置如何影響氣候。
從 CRAN 安裝 r2dii.analysis 的發布版本:
install.packages( " r2dii.analysis " )
或從 GitHub 安裝 r2dii.analysis 的開發版本:
# install.packages("pak")
pak :: pak( " RMI-PACTA/r2dii.analysis " )
library()
附加您需要的套件。 r2dii.analysis 不依賴 r2dii.data 和 r2dii.match 套件;但我們建議您使用install.packages(c("r2dii.data", "r2dii.match"))
來安裝它們 - 這樣您就可以重現我們的範例。 library( r2dii.data )
library( r2dii.match )
library( r2dii.analysis )
r2dii.match::match_name()
來識別貸款簿和資產等級資料之間的匹配。 matched <- match_name( loanbook_demo , abcd_demo ) % > %
prioritize()
target_sda()
計算 CO2 排放的 SDA 目標。 matched % > %
target_sda(
abcd = abcd_demo ,
co2_intensity_scenario = co2_intensity_scenario_demo ,
region_isos = region_isos_demo
)
# > Warning: Removing rows in abcd where `emission_factor` is NA
# > # A tibble: 220 × 6
# > sector year region scenario_source emission_factor_metric
# > <chr> <dbl> <chr> <chr> <chr>
# > 1 cement 2020 advanced economies demo_2020 projected
# > 2 cement 2020 developing asia demo_2020 projected
# > 3 cement 2020 global demo_2020 projected
# > 4 cement 2021 advanced economies demo_2020 projected
# > 5 cement 2021 developing asia demo_2020 projected
# > 6 cement 2021 global demo_2020 projected
# > 7 cement 2022 advanced economies demo_2020 projected
# > 8 cement 2022 developing asia demo_2020 projected
# > 9 cement 2022 global demo_2020 projected
# > 10 cement 2023 advanced economies demo_2020 projected
# > # ℹ 210 more rows
# > # ℹ 1 more variable: emission_factor_value <dbl>
target_market_share
計算投資組合層級的市佔率場景目標: matched % > %
target_market_share(
abcd = abcd_demo ,
scenario = scenario_demo_2020 ,
region_isos = region_isos_demo
)
# > # A tibble: 1,076 × 10
# > sector technology year region scenario_source metric production
# > <chr> <chr> <int> <chr> <chr> <chr> <dbl>
# > 1 automotive electric 2020 global demo_2020 projected 145649.
# > 2 automotive electric 2020 global demo_2020 target_cps 145649.
# > 3 automotive electric 2020 global demo_2020 target_sds 145649.
# > 4 automotive electric 2020 global demo_2020 target_sps 145649.
# > 5 automotive electric 2021 global demo_2020 projected 147480.
# > 6 automotive electric 2021 global demo_2020 target_cps 146915.
# > 7 automotive electric 2021 global demo_2020 target_sds 153332.
# > 8 automotive electric 2021 global demo_2020 target_sps 147258.
# > 9 automotive electric 2022 global demo_2020 projected 149310.
# > 10 automotive electric 2022 global demo_2020 target_cps 148155.
# > # ℹ 1,066 more rows
# > # ℹ 3 more variables: technology_share <dbl>, scope <chr>,
# > # percentage_of_initial_production_by_scope <dbl>
matched % > %
target_market_share(
abcd = abcd_demo ,
scenario = scenario_demo_2020 ,
region_isos = region_isos_demo ,
by_company = TRUE
)
# > Warning: You've supplied `by_company = TRUE` and `weight_production = TRUE`.
# > This will result in company-level results, weighted by the portfolio
# > loan size, which is rarely useful. Did you mean to set one of these
# > arguments to `FALSE`?
# > # A tibble: 14,505 × 11
# > sector technology year region scenario_source name_abcd metric production
# > <chr> <chr> <int> <chr> <chr> <chr> <chr> <dbl>
# > 1 automoti… electric 2020 global demo_2020 Bernardi… proje… 17951.
# > 2 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951.
# > 3 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951.
# > 4 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951.
# > 5 automoti… electric 2020 global demo_2020 Christia… proje… 11471.
# > 6 automoti… electric 2020 global demo_2020 Christia… targe… 11471.
# > 7 automoti… electric 2020 global demo_2020 Christia… targe… 11471.
# > 8 automoti… electric 2020 global demo_2020 Christia… targe… 11471.
# > 9 automoti… electric 2020 global demo_2020 Donati, … proje… 5611.
# > 10 automoti… electric 2020 global demo_2020 Donati, … targe… 5611.
# > # ℹ 14,495 more rows
# > # ℹ 3 more variables: technology_share <dbl>, scope <chr>,
# > # percentage_of_initial_production_by_scope <dbl>
target_*()
函數提供常見操作的捷徑。它們封裝了一些您也可以直接使用的實用函數:
join_abcd_scenario()
將匹配的數據集連接到相關場景數據,並選擇相關區域中的資產。 loanbook_joined_to_abcd_scenario <- matched % > %
join_abcd_scenario(
abcd = abcd_demo ,
scenario = scenario_demo_2020 ,
region_isos = region_isos_demo
)
summarize_weighted_production()
來計算場景目標: # portfolio level
loanbook_joined_to_abcd_scenario % > %
summarize_weighted_production( scenario , tmsr , smsp , region )
# > # A tibble: 756 × 9
# > sector_abcd technology year scenario tmsr smsp region
# > <chr> <chr> <int> <chr> <dbl> <dbl> <chr>
# > 1 automotive electric 2020 cps 1 0 global
# > 2 automotive electric 2020 sds 1 0 global
# > 3 automotive electric 2020 sps 1 0 global
# > 4 automotive electric 2021 cps 1.12 0.00108 global
# > 5 automotive electric 2021 sds 1.16 0.00653 global
# > 6 automotive electric 2021 sps 1.14 0.00137 global
# > 7 automotive electric 2022 cps 1.24 0.00213 global
# > 8 automotive electric 2022 sds 1.32 0.0131 global
# > 9 automotive electric 2022 sps 1.29 0.00273 global
# > 10 automotive electric 2023 cps 1.35 0.00316 global
# > # ℹ 746 more rows
# > # ℹ 2 more variables: weighted_production <dbl>,
# > # weighted_technology_share <dbl>
# company level
loanbook_joined_to_abcd_scenario % > %
summarize_weighted_production( scenario , tmsr , smsp , region , name_abcd )
# > # A tibble: 13,023 × 10
# > sector_abcd technology year scenario tmsr smsp region name_abcd
# > <chr> <chr> <int> <chr> <dbl> <dbl> <chr> <chr>
# > 1 automotive electric 2020 cps 1 0 global Bernardi, Bernardi …
# > 2 automotive electric 2020 cps 1 0 global Christiansen PLC
# > 3 automotive electric 2020 cps 1 0 global Donati, Donati e Do…
# > 4 automotive electric 2020 cps 1 0 global DuBuque-DuBuque
# > 5 automotive electric 2020 cps 1 0 global Ferrari-Ferrari SPA
# > 6 automotive electric 2020 cps 1 0 global Ferry and Sons
# > 7 automotive electric 2020 cps 1 0 global Goyette-Goyette
# > 8 automotive electric 2020 cps 1 0 global Guerra, Guerra e Gu…
# > 9 automotive electric 2020 cps 1 0 global Gutkowski, Gutkowsk…
# > 10 automotive electric 2020 cps 1 0 global Hilpert, Hilpert an…
# > # ℹ 13,013 more rows
# > # ℹ 2 more variables: weighted_production <dbl>,
# > # weighted_technology_share <dbl>
開始吧。
該計畫獲得了歐盟 LIFE 計畫和國際氣候倡議 (IKI) 的資助。聯邦環境、自然保護和核安部 (BMU) 根據德國聯邦議院通過的決定支持這項倡議。所表達的觀點由作者承擔全部責任,不一定反映資助者的觀點。資助者對其所包含資訊的任何使用不承擔任何責任。