在這個檔案中,我從頭開始實作了 llama3,一次一個張量和矩陣乘法。
另外,我將直接從元為 llama3 提供的模型檔案載入張量,您需要在運行此檔案之前下載權重。這是下載權重的官方連結:https://llama.meta.com/llama-downloads/
我不會實作 bpe tokenizer(但 andrej karpathy 有一個非常乾淨的實作)
連結到他的實現:https://github.com/karpathy/minbpe
from pathlib import Path
import tiktoken
from tiktoken . load import load_tiktoken_bpe
import torch
import json
import matplotlib . pyplot as plt
tokenizer_path = "Meta-Llama-3-8B/tokenizer.model"
special_tokens = [
"<|begin_of_text|>" ,
"<|end_of_text|>" ,
"<|reserved_special_token_0|>" ,
"<|reserved_special_token_1|>" ,
"<|reserved_special_token_2|>" ,
"<|reserved_special_token_3|>" ,
"<|start_header_id|>" ,
"<|end_header_id|>" ,
"<|reserved_special_token_4|>" ,
"<|eot_id|>" , # end of turn
] + [ f"<|reserved_special_token_ { i } |>" for i in range ( 5 , 256 - 5 )]
mergeable_ranks = load_tiktoken_bpe ( tokenizer_path )
tokenizer = tiktoken . Encoding (
name = Path ( tokenizer_path ). name ,
pat_str = r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^rnp{L}p{N}]?p{L}+|p{N}{1,3}| ?[^sp{L}p{N}]+[rn]*|s*[rn]+|s+(?!S)|s+" ,
mergeable_ranks = mergeable_ranks ,
special_tokens = { token : len ( mergeable_ranks ) + i for i , token in enumerate ( special_tokens )},
)
tokenizer . decode ( tokenizer . encode ( "hello world!" ))
'hello world!'
通常,閱讀本文取決於模型類別的編寫方式以及其中的變數名稱。
但由於我們是從頭開始實作 llama3,因此我們將一次讀取一個張量該檔案。
model = torch . load ( "Meta-Llama-3-8B/consolidated.00.pth" )
print ( json . dumps ( list ( model . keys ())[: 20 ], indent = 4 ))
[
"tok_embeddings.weight",
"layers.0.attention.wq.weight",
"layers.0.attention.wk.weight",
"layers.0.attention.wv.weight",
"layers.0.attention.wo.weight",
"layers.0.feed_forward.w1.weight",
"layers.0.feed_forward.w3.weight",
"layers.0.feed_forward.w2.weight",
"layers.0.attention_norm.weight",
"layers.0.ffn_norm.weight",
"layers.1.attention.wq.weight",
"layers.1.attention.wk.weight",
"layers.1.attention.wv.weight",
"layers.1.attention.wo.weight",
"layers.1.feed_forward.w1.weight",
"layers.1.feed_forward.w3.weight",
"layers.1.feed_forward.w2.weight",
"layers.1.attention_norm.weight",
"layers.1.ffn_norm.weight",
"layers.2.attention.wq.weight"
]
with open ( "Meta-Llama-3-8B/params.json" , "r" ) as f :
config = json . load ( f )
config
{'dim': 4096,
'n_layers': 32,
'n_heads': 32,
'n_kv_heads': 8,
'vocab_size': 128256,
'multiple_of': 1024,
'ffn_dim_multiplier': 1.3,
'norm_eps': 1e-05,
'rope_theta': 500000.0}
dim = config [ "dim" ]
n_layers = config [ "n_layers" ]
n_heads = config [ "n_heads" ]
n_kv_heads = config [ "n_kv_heads" ]
vocab_size = config [ "vocab_size" ]
multiple_of = config [ "multiple_of" ]
ffn_dim_multiplier = config [ "ffn_dim_multiplier" ]
norm_eps = config [ "norm_eps" ]
rope_theta = torch . tensor ( config [ "rope_theta" ])
這裡我們使用 tiktoken (我認為是一個 openai 函式庫)作為 tokenizer
prompt = "the answer to the ultimate question of life, the universe, and everything is "
tokens = [ 128000 ] + tokenizer . encode ( prompt )
print ( tokens )
tokens = torch . tensor ( tokens )
prompt_split_as_tokens = [ tokenizer . decode ([ token . item ()]) for token in tokens ]
print ( prompt_split_as_tokens )
[128000, 1820, 4320, 311, 279, 17139, 3488, 315, 2324, 11, 279, 15861, 11, 323, 4395, 374, 220]
['<|begin_of_text|>', 'the', ' answer', ' to', ' the', ' ultimate', ' question', ' of', ' life', ',', ' the', ' universe', ',', ' and', ' everything', ' is', ' ']
抱歉,但這是程式碼庫中我使用內建神經網路模組的唯一部分
無論如何,所以我們的 [17x1] 令牌現在是 [17x4096],即 17 個長度為 4096 的嵌入(每個令牌一個)
注意:追蹤形狀,這樣可以更容易理解所有內容
embedding_layer = torch . nn . Embedding ( vocab_size , dim )
embedding_layer . weight . data . copy_ ( model [ "tok_embeddings.weight" ])
token_embeddings_unnormalized = embedding_layer ( tokens ). to ( torch . bfloat16 )
token_embeddings_unnormalized . shape
torch.Size([17, 4096])
請注意,執行此步驟後,形狀不會改變,數值只是標準化
要記住的事情,我們需要一個norm_eps(來自配置),因為我們不想意外地將rms設為0並除以0
這是公式:
# def rms_norm(tensor, norm_weights):
# rms = (tensor.pow(2).mean(-1, keepdim=True) + norm_eps)**0.5
# return tensor * (norm_weights / rms)
def rms_norm ( tensor , norm_weights ):
return ( tensor * torch . rsqrt ( tensor . pow ( 2 ). mean ( - 1 , keepdim = True ) + norm_eps )) * norm_weights
你會看到我從模型字典存取layer.0(這是第一層)
不管怎樣,所以在標準化之後,我們的形狀仍然是[17x4096]與嵌入相同,但是標準化了
token_embeddings = rms_norm ( token_embeddings_unnormalized , model [ "layers.0.attention_norm.weight" ])
token_embeddings . shape
torch.Size([17, 4096])
讓我們加載變壓器第一層的注意力頭
> 當我們從模型載入查詢、鍵、值和輸出向量時,我們注意到形狀為 [4096x4096]、[1024x4096]、[1024x4096]、[4096x4096]
> 乍看之下這很奇怪,因為理想情況下我們希望每個頭分別有每個 q、k、v 和 o
> 程式碼的作者將它們捆綁在一起,因為它很容易,有助於並行化注意力頭乘法。
> 我要打開所有東西...
print (
model [ "layers.0.attention.wq.weight" ]. shape ,
model [ "layers.0.attention.wk.weight" ]. shape ,
model [ "layers.0.attention.wv.weight" ]. shape ,
model [ "layers.0.attention.wo.weight" ]. shape
)
torch.Size([4096, 4096]) torch.Size([1024, 4096]) torch.Size([1024, 4096]) torch.Size([4096, 4096])
在下一節中,我們將從多個注意力頭中解開查詢,結果形狀為 [32x128x4096]
這裡,32是llama3中註意力頭的數量,128是查詢向量的大小,4096是令牌嵌入的大小
q_layer0 = model [ "layers.0.attention.wq.weight" ]
head_dim = q_layer0 . shape [ 0 ] // n_heads
q_layer0 = q_layer0 . view ( n_heads , head_dim , dim )
q_layer0 . shape
torch.Size([32, 128, 4096])
這裡我訪問第一層的查詢權重矩陣第一個頭,這個查詢權重矩陣的大小是[128x4096]
q_layer0_head0 = q_layer0 [ 0 ]
q_layer0_head0 . shape
torch.Size([128, 4096])
在這裡你可以看到結果的形狀是 [17x128],這是因為我們有 17 個標記,每個標記都有一個 128 長度的查詢。
q_per_token = torch . matmul ( token_embeddings , q_layer0_head0 . T )
q_per_token . shape
torch.Size([17, 128])
我們現在處於這樣一個階段:提示中的每個標記都有一個查詢向量,但如果你仔細想想——單獨的查詢向量不知道提示中的位置。
查詢:“生命、宇宙和一切終極問題的答案是”
在我們的提示中,我們使用了「the」三次,我們需要所有 3 個「the」標記的查詢向量根據它們在查詢中的位置具有不同的查詢向量(每個大小為 [1x128])。我們使用 RoPE(旋轉位置嵌入)來執行這些旋轉。
觀看此影片(這就是我觀看的)以理解數學。 https://www.youtube.com/watch?v=o29P0Kpobz0&t=530s
q_per_token_split_into_pairs = q_per_token . float (). view ( q_per_token . shape [ 0 ], - 1 , 2 )
q_per_token_split_into_pairs . shape
torch.Size([17, 64, 2])
在上面的步驟中,我們將查詢向量分成對,我們對每對應用旋轉角度偏移!
我們現在有一個大小為 [17x64x2] 的向量,這是針對提示中的每個標記將 128 個長度的查詢分為 64 對!這 64 對中的每一對都會旋轉 m*(theta),其中 m 是我們旋轉查詢的標記的位置!
zero_to_one_split_into_64_parts = torch . tensor ( range ( 64 )) / 64
zero_to_one_split_into_64_parts
tensor([0.0000, 0.0156, 0.0312, 0.0469, 0.0625, 0.0781, 0.0938, 0.1094, 0.1250,
0.1406, 0.1562, 0.1719, 0.1875, 0.2031, 0.2188, 0.2344, 0.2500, 0.2656,
0.2812, 0.2969, 0.3125, 0.3281, 0.3438, 0.3594, 0.3750, 0.3906, 0.4062,
0.4219, 0.4375, 0.4531, 0.4688, 0.4844, 0.5000, 0.5156, 0.5312, 0.5469,
0.5625, 0.5781, 0.5938, 0.6094, 0.6250, 0.6406, 0.6562, 0.6719, 0.6875,
0.7031, 0.7188, 0.7344, 0.7500, 0.7656, 0.7812, 0.7969, 0.8125, 0.8281,
0.8438, 0.8594, 0.8750, 0.8906, 0.9062, 0.9219, 0.9375, 0.9531, 0.9688,
0.9844])
freqs = 1.0 / ( rope_theta ** zero_to_one_split_into_64_parts )
freqs
tensor([1.0000e+00, 8.1462e-01, 6.6360e-01, 5.4058e-01, 4.4037e-01, 3.5873e-01,
2.9223e-01, 2.3805e-01, 1.9392e-01, 1.5797e-01, 1.2869e-01, 1.0483e-01,
8.5397e-02, 6.9566e-02, 5.6670e-02, 4.6164e-02, 3.7606e-02, 3.0635e-02,
2.4955e-02, 2.0329e-02, 1.6560e-02, 1.3490e-02, 1.0990e-02, 8.9523e-03,
7.2927e-03, 5.9407e-03, 4.8394e-03, 3.9423e-03, 3.2114e-03, 2.6161e-03,
2.1311e-03, 1.7360e-03, 1.4142e-03, 1.1520e-03, 9.3847e-04, 7.6450e-04,
6.2277e-04, 5.0732e-04, 4.1327e-04, 3.3666e-04, 2.7425e-04, 2.2341e-04,
1.8199e-04, 1.4825e-04, 1.2077e-04, 9.8381e-05, 8.0143e-05, 6.5286e-05,
5.3183e-05, 4.3324e-05, 3.5292e-05, 2.8750e-05, 2.3420e-05, 1.9078e-05,
1.5542e-05, 1.2660e-05, 1.0313e-05, 8.4015e-06, 6.8440e-06, 5.5752e-06,
4.5417e-06, 3.6997e-06, 3.0139e-06, 2.4551e-06])
freqs_for_each_token = torch . outer ( torch . arange ( 17 ), freqs )
freqs_cis = torch . polar ( torch . ones_like ( freqs_for_each_token ), freqs_for_each_token )
freqs_cis . shape
# viewing tjhe third row of freqs_cis
value = freqs_cis [ 3 ]
plt . figure ()
for i , element in enumerate ( value [: 17 ]):
plt . plot ([ 0 , element . real ], [ 0 , element . imag ], color = 'blue' , linewidth = 1 , label = f"Index: { i } " )
plt . annotate ( f" { i } " , xy = ( element . real , element . imag ), color = 'red' )
plt . xlabel ( 'Real' )
plt . ylabel ( 'Imaginary' )
plt . title ( 'Plot of one row of freqs_cis' )
plt . show ()
我們可以將查詢(我們分成對的查詢)轉換為複數,然後進行點積以根據位置旋轉查詢
老實說,想想就很美好:)
q_per_token_as_complex_numbers = torch . view_as_complex ( q_per_token_split_into_pairs )
q_per_token_as_complex_numbers . shape
torch.Size([17, 64])
q_per_token_as_complex_numbers_rotated = q_per_token_as_complex_numbers * freqs_cis
q_per_token_as_complex_numbers_rotated . shape
torch.Size([17, 64])
我們可以透過再次將複數視為實數來傳回成對的查詢
q_per_token_split_into_pairs_rotated = torch . view_as_real ( q_per_token_as_complex_numbers_rotated )
q_per_token_split_into_pairs_rotated . shape
torch.Size([17, 64, 2])
旋轉的對現在被合併,我們現在有一個新的查詢向量(旋轉查詢向量),其形狀為 [17x128],其中 17 是標記的數量,128 是查詢向量的暗度
q_per_token_rotated = q_per_token_split_into_pairs_rotated . view ( q_per_token . shape )
q_per_token_rotated . shape
torch.Size([17, 128])
k_layer0 = model [ "layers.0.attention.wk.weight" ]
k_layer0 = k_layer0 . view ( n_kv_heads , k_layer0 . shape [ 0 ] // n_kv_heads , dim )
k_layer0 . shape
torch.Size([8, 128, 4096])
k_layer0_head0 = k_layer0 [ 0 ]
k_layer0_head0 . shape
torch.Size([128, 4096])
k_per_token = torch . matmul ( token_embeddings , k_layer0_head0 . T )
k_per_token . shape
torch.Size([17, 128])
k_per_token_split_into_pairs = k_per_token . float (). view ( k_per_token . shape [ 0 ], - 1 , 2 )
k_per_token_split_into_pairs . shape
torch.Size([17, 64, 2])
k_per_token_as_complex_numbers = torch . view_as_complex ( k_per_token_split_into_pairs )
k_per_token_as_complex_numbers . shape
torch.Size([17, 64])
k_per_token_split_into_pairs_rotated = torch . view_as_real ( k_per_token_as_complex_numbers * freqs_cis )
k_per_token_split_into_pairs_rotated . shape
torch.Size([17, 64, 2])
k_per_token_rotated = k_per_token_split_into_pairs_rotated . view ( k_per_token . shape )
k_per_token_rotated . shape
torch.Size([17, 128])
這樣做會給我們一個將每個標記相互映射的分數
此分數描述了每個令牌的查詢與每個令牌的密鑰的相關程度。這是自我注意:)
注意力得分矩陣 (qk_per_token) 的形狀為 [17x17],其中 17 是提示中標記的數量
qk_per_token = torch . matmul ( q_per_token_rotated , k_per_token_rotated . T ) / ( head_dim ) ** 0.5
qk_per_token . shape
torch.Size([17, 17])
在 llama3 的訓練過程中,未來的 token qk 分數被屏蔽。
為什麼?因為在訓練期間我們只學習使用過去的標記來預測標記。
因此,在推理過程中,我們將未來的標記設為零。
def display_qk_heatmap ( qk_per_token ):
_ , ax = plt . subplots ()
im = ax . imshow ( qk_per_token . to ( float ). detach (), cmap = 'viridis' )
ax . set_xticks ( range ( len ( prompt_split_as_tokens )))
ax . set_yticks ( range ( len ( prompt_split_as_tokens )))
ax . set_xticklabels ( prompt_split_as_tokens )
ax . set_yticklabels ( prompt_split_as_tokens )
ax . figure . colorbar ( im , ax = ax )
display_qk_heatmap ( qk_per_token )
mask = torch . full (( len ( tokens ), len ( tokens )), float ( "-inf" ), device = tokens . device )
mask = torch . triu ( mask , diagonal = 1 )
mask
tensor([[0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
qk_per_token_after_masking = qk_per_token + mask
display_qk_heatmap ( qk_per_token_after_masking )
qk_per_token_after_masking_after_softmax = torch . nn . functional . softmax ( qk_per_token_after_masking , dim = 1 ). to ( torch . bfloat16 )
display_qk_heatmap ( qk_per_token_after_masking_after_softmax )
v_layer0 = model [ "layers.0.attention.wv.weight" ]
v_layer0 = v_layer0 . view ( n_kv_heads , v_layer0 . shape [ 0 ] // n_kv_heads , dim )
v_layer0 . shape
torch.Size([8, 128, 4096])
下面給出第一層第一頭值權重矩陣
v_layer0_head0 = v_layer0 [ 0 ]
v_layer0_head0 . shape
torch.Size([128, 4096])
v_per_token = torch . matmul ( token_embeddings , v_layer0_head0 . T )
v_per_token . shape
torch.Size([17, 128])
qkv_attention = torch . matmul ( qk_per_token_after_masking_after_softmax , v_per_token )
qkv_attention . shape
torch.Size([17, 128])