Lasagne
1.0.0
Lasagne 是一個輕量級函式庫,用於在 Theano 中建立和訓練神經網路。其主要特點是:
其設計遵循六個原則:
簡而言之,您可以透過以下方式安裝已知相容的 Theano 版本和最新的 Lasagne 開發版本:
pip install -r https://raw.githubusercontent.com/Lasagne/Lasagne/master/requirements.txt
pip install https://github.com/Lasagne/Lasagne/archive/master.zip
有關更多詳細資訊和替代方案,請參閱安裝說明。
文件可在線取得:http://lasagne.readthedocs.org/
如需支持,請參閱烤寬麵條使用者郵件清單。
import lasagne
import theano
import theano . tensor as T
# create Theano variables for input and target minibatch
input_var = T . tensor4 ( 'X' )
target_var = T . ivector ( 'y' )
# create a small convolutional neural network
from lasagne . nonlinearities import leaky_rectify , softmax
network = lasagne . layers . InputLayer (( None , 3 , 32 , 32 ), input_var )
network = lasagne . layers . Conv2DLayer ( network , 64 , ( 3 , 3 ),
nonlinearity = leaky_rectify )
network = lasagne . layers . Conv2DLayer ( network , 32 , ( 3 , 3 ),
nonlinearity = leaky_rectify )
network = lasagne . layers . Pool2DLayer ( network , ( 3 , 3 ), stride = 2 , mode = 'max' )
network = lasagne . layers . DenseLayer ( lasagne . layers . dropout ( network , 0.5 ),
128 , nonlinearity = leaky_rectify ,
W = lasagne . init . Orthogonal ())
network = lasagne . layers . DenseLayer ( lasagne . layers . dropout ( network , 0.5 ),
10 , nonlinearity = softmax )
# create loss function
prediction = lasagne . layers . get_output ( network )
loss = lasagne . objectives . categorical_crossentropy ( prediction , target_var )
loss = loss . mean () + 1e-4 * lasagne . regularization . regularize_network_params (
network , lasagne . regularization . l2 )
# create parameter update expressions
params = lasagne . layers . get_all_params ( network , trainable = True )
updates = lasagne . updates . nesterov_momentum ( loss , params , learning_rate = 0.01 ,
momentum = 0.9 )
# compile training function that updates parameters and returns training loss
train_fn = theano . function ([ input_var , target_var ], loss , updates = updates )
# train network (assuming you've got some training data in numpy arrays)
for epoch in range ( 100 ):
loss = 0
for input_batch , target_batch in training_data :
loss += train_fn ( input_batch , target_batch )
print ( "Epoch %d: Loss %g" % ( epoch + 1 , loss / len ( training_data )))
# use trained network for predictions
test_prediction = lasagne . layers . get_output ( network , deterministic = True )
predict_fn = theano . function ([ input_var ], T . argmax ( test_prediction , axis = 1 ))
print ( "Predicted class for first test input: %r" % predict_fn ( test_data [ 0 ]))
有關功能齊全的範例,請參閱 Examples/mnist.py,並查看教學課程以取得對其的深入說明。更多範例、程式碼片段和最近研究論文的複製品保存在單獨的烤寬麵條食譜儲存庫中。
如果您發現烤寬麵條對您的科學工作有用,請考慮在最終的出版物中引用它。我們提供了一個現成的 BibTeX 條目用於引用 Lasagne。
烤寬麵條是一項正在進行的工作,歡迎輸入。
有關如何貢獻的詳細信息,請參閱貢獻說明!