deformable attention
0.0.19
在 Pytorch 中實現本文論文中的可變形注意力,這似乎是對 DETR 中提出的內容的改進。使用 SwinV2 中提出的連續位置嵌入,也對相對位置嵌入進行了修改,以實現更好的外推。
$ pip install deformable-attention
import torch
from deformable_attention import DeformableAttention
attn = DeformableAttention (
dim = 512 , # feature dimensions
dim_head = 64 , # dimension per head
heads = 8 , # attention heads
dropout = 0. , # dropout
downsample_factor = 4 , # downsample factor (r in paper)
offset_scale = 4 , # scale of offset, maximum offset
offset_groups = None , # number of offset groups, should be multiple of heads
offset_kernel_size = 6 , # offset kernel size
)
x = torch . randn ( 1 , 512 , 64 , 64 )
attn ( x ) # (1, 512, 64, 64)
3d 可變形注意力
import torch
from deformable_attention import DeformableAttention3D
attn = DeformableAttention3D (
dim = 512 , # feature dimensions
dim_head = 64 , # dimension per head
heads = 8 , # attention heads
dropout = 0. , # dropout
downsample_factor = ( 2 , 8 , 8 ), # downsample factor (r in paper)
offset_scale = ( 2 , 8 , 8 ), # scale of offset, maximum offset
offset_kernel_size = ( 4 , 10 , 10 ), # offset kernel size
)
x = torch . randn ( 1 , 512 , 10 , 32 , 32 ) # (batch, dimension, frames, height, width)
attn ( x ) # (1, 512, 10, 32, 32)
1d 可變形注意力以達到良好的測量效果
import torch
from deformable_attention import DeformableAttention1D
attn = DeformableAttention1D (
dim = 128 ,
downsample_factor = 4 ,
offset_scale = 2 ,
offset_kernel_size = 6
)
x = torch . randn ( 1 , 128 , 512 )
attn ( x ) # (1, 128, 512)
@misc { xia2022vision ,
title = { Vision Transformer with Deformable Attention } ,
author = { Zhuofan Xia and Xuran Pan and Shiji Song and Li Erran Li and Gao Huang } ,
year = { 2022 } ,
eprint = { 2201.00520 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { liu2021swin ,
title = { Swin Transformer V2: Scaling Up Capacity and Resolution } ,
author = { Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo } ,
year = { 2021 } ,
eprint = { 2111.09883 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}