bun add mitata
npm install mitata
جرب Mitata في المتصفح باستخدام مساعد AI على https://bolt.new/~/mitata
node --expose-gc ...
)جافا سكريبت | C++ رأس واحد |
---|---|
import { run , bench , boxplot } from 'mitata' ;
function fibonacci ( n ) {
if ( n <= 1 ) return n ;
return fibonacci ( n - 1 ) + fibonacci ( n - 2 ) ;
}
bench ( 'fibonacci(40)' , ( ) => fibonacci ( 40 ) ) ;
boxplot ( ( ) => {
bench ( 'Array.from($size)' , function * ( state ) {
const size = state . get ( 'size' ) ;
yield ( ) => Array . from ( { length : size } ) ;
} ) . range ( 'size' , 1 , 1024 ) ;
} ) ;
await run ( ) ; | # include " src/mitata.hpp "
int fibonacci ( int n) {
if (n <= 1 ) return n;
return fibonacci (n - 1 ) + fibonacci (n - 2 );
}
int main () {
mitata::runner runner;
runner. bench ( " noop " , []() { });
runner. summary ([&]() {
runner. bench ( " empty fn " , []() { });
runner. bench ( " fibonacci " , []() { fibonacci ( 20 ); });
});
auto stats = runner. run ();
} |
import { run } from 'mitata' ;
await run ( { format : 'mitata' , colors : false } ) ; // default format
await run ( { filter : / new Array.* / } ) // only run benchmarks that match regex filter
await run ( { throw : true } ) ; // will immediately throw instead of handling error quietly
// c++
auto stats = runner . run ( { . colors = true , . format = "json" , . filter = std :: regex ( ".*" ) } ) ;
في أوقات التشغيل التي تعرض gc (على سبيل المثال، Bun, node --expose-gc ...
)، ستقوم mitata تلقائيًا بتشغيل تجميع البيانات المهملة قبل كل معيار.
يمكن تخصيص هذا السلوك بشكل أكبر عبر وظيفة gc
في كل معيار (يجب عليك القيام بذلك فقط عند الضرورة القصوى - ارتفاعات gc كبيرة):
bench ( 'lots of allocations' , ( ) => {
Array . from ( { length : 1024 } , ( ) => Array . from ( { length : 1024 } , ( ) => new Array ( 1024 ) ) ) ;
} )
// false | 'once' (default) | 'inner'
// once runs gc after warmup
// inner runs gc after warmup and before each (batch-)iteration
. gc ( 'inner' ) ;
يمكن للميتاتا الجاهزة اكتشاف المحرك/وقت التشغيل الذي يعمل عليه والعودة إلى استخدام وظائف الإدخال/الإخراج البديلة غير القياسية. إذا كان المحرك أو وقت التشغيل لديك يفتقر إلى الدعم، فافتح مشكلة أو طلبًا للحصول على الدعم.
$ xs bench.mjs
$ quickjs bench.mjs
$ d8 --expose-gc bench.mjs
$ spidermonkey -m bench.mjs
$ graaljs --js.timer-resolution=1 bench.mjs
$ /System/Library/Frameworks/JavaScriptCore.framework/Versions/Current/Helpers/jsc bench.mjs
// bench.mjs
import { print } from './src/lib.mjs' ;
import { run , bench } from './src/main.mjs' ; // git clone
import { run , bench } from './node_modules/mitata/src/main.mjs' ; // npm install
print ( 'hello world' ) ; // works on every engine
مع مكتبات قياس الأداء الأخرى، غالبًا ما يكون من الصعب جدًا إنشاء معايير تتجاوز نطاقًا أو تشغيل نفس الوظيفة مع وسائط مختلفة دون كتابة كود السباغيتي، ولكن الآن مع mitata، أصبح تحويل المعيار الخاص بك لاستخدام الوسائط مجرد استدعاء دالة.
import { bench } from 'mitata' ;
bench ( function * look_mom_no_spaghetti ( state ) {
const len = state . get ( 'len' ) ;
const len2 = state . get ( 'len2' ) ;
yield ( ) => new Array ( len * len2 ) ;
} )
. args ( 'len' , [ 1 , 2 , 3 ] )
. range ( 'len' , 1 , 1024 ) // 1, 8, 64, 512...
. dense_range ( 'len' , 1 , 100 ) // 1, 2, 3 ... 99, 100
. args ( { len : [ 1 , 2 , 3 ] , len2 : [ '4' , '5' , '6' ] } ) // every possible combination
بالنسبة للحالات التي تحتاج فيها إلى نسخة فريدة من القيمة لكل تكرار، تدعم mitata إنشاء معلمات محسوبة لا يتم احتسابها ضمن نتائج القياس (ملاحظة: لا يوجد ضمان لإعادة حساب الوقت أو الطلب أو عدد المكالمات) :
bench ( 'deleting $keys from object' , function * ( state ) {
const keys = state . get ( 'keys' ) ;
const obj = { } ;
for ( let i = 0 ; i < keys ; i ++ ) obj [ i ] = i ;
yield {
[ 0 ] ( ) {
return { ... obj } ;
} ,
bench ( p0 ) {
for ( let i = 0 ; i < keys ; i ++ ) delete p0 [ i ] ;
} ,
} ;
} ) . args ( 'keys' , [ 1 , 10 , 100 ] ) ;
bun add @mitata/counters
npm install @mitata/counters
مدعوم على: macos (apple silicon) | linux (amd64, aarch64)
من خلال تثبيت حزمة @mitata/counters
يمكنك تمكين جمع وعرض عدادات الأجهزة للمعايير.
------------------------------------------- -------------------------------
new Array ( 1024 ) 332.67 ns/iter 337 . 90 ns █
( 295.63 ns … 507 . 93 ns ) 455 . 66 ns ▂██▇▄▂▂▂▁▂▁▃▃▃▂▂▁▁▁▁▁
2 . 41 ipc ( 48.66 % stalls ) 37 . 89 % L1 data cache
1.11 k cycles 2.69 k instructions 33.09 % retired LD / ST ( 888.96 )
new URL ( google . com ) 246 . 40 ns /iter 245 . 10 ns █▃
( 206.01 ns … 841 . 23 ns ) 302 . 39 ns ▁▁▁▁▂███▇▃▂▂▂▂▂▂▂▁▁▁▁
4 . 12 ipc ( 1.05 % stalls ) 98 . 88 % L1 data cache
856.49 cycles 3.53 k instructions 28.65 % retired LD / ST ( 1.01 k )
بالنسبة لأولئك الذين يحبون إجراء المقاييس الدقيقة، يمكن لـ mitata اكتشاف وإبلاغك تلقائيًا بتمريرات التحسين مثل إزالة التعليمات البرمجية الميتة دون الحاجة إلى أي إشارات محرك خاصة.
-------------------------------------- -------------------------------
1 + 1 318.63 ps/iter 325 . 37 ps ▇ █ !
( 267.92 ps … 14 . 28 ns ) 382 . 81 ps ▁▁▁▁▁▁▁█▁▁█▁▁▁▁▁▁▁▁▁▁
empty function 319 . 36 ps /iter 325 . 37 ps █ ▅ !
( 248.62 ps … 46 . 61 ns ) 382 . 81 ps ▁▁▁▁▁▁▃▁▁█▁█▇▁▁▁▁▁▁▁▁
! = benchmark was likely optimized out ( dead code elimination )
بفضل إمكانات عرض ascii الخاصة بـ mitata، يمكنك الآن بسهولة تصور العينات في barplots وboxplots وlineplots ورسوم بيانية والحصول على ملخصات واضحة دون أي أدوات أو تبعيات إضافية.
-------------------------------------- -------------------------------
1 + 1 318.11 ps/iter 325 . 37 ps ▇ █ !
( 267.92 ps … 11 . 14 ns ) 363 . 97 ps ▁▁▁▁▁▁▁▁█▁▁▁█▁▁▁▁▁▁▁▁
Date . now ( ) 27.69 ns/iter 27 . 48 ns █
( 27.17 ns … 44 . 10 ns ) 32 . 74 ns ▃█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
┌ ┐
1 + 1 ┤■ 318.11 ps
Date . now ( ) ┤■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 27.69 ns
└ ┘
-------------------------------------- -------------------------------
Bubble Sort 2.11 ms/iter 2 . 26 ms █
( 1.78 ms … 6 . 93 ms ) 4 . 77 ms ▃█▃▆▅▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Quick Sort 159 . 60 µs /iter 154 . 50 µs █
( 133.13 µs … 792 . 21 µs ) 573 . 00 µs ▅█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Native Sort 97 . 20 µs /iter 97 . 46 µs ██
( 90.88 µs … 688 . 92 µs ) 105 . 00 µs ▁▁▂▁▁▂▇██▇▃▃▃▃▃▂▂▂▁▁▁
┌ ┐
╷┌─┬─┐ ╷
Bubble Sort ├┤ │ ├───────────────────────┤
╵└─┴─┘ ╵
┬ ╷
Quick Sort │───┤
┴ ╵
┬
Native Sort │
┴
└ ┘
90 . 88 µs 2 . 43 ms 4 . 77 ms
-------------------------------------- -------------------------------
new Array ( 1 ) 3.57 ns/iter 3 . 20 ns 6 . 64 ns ▁█▄▂▁▁▁▁▁▁
new Array ( 8 ) 5 . 21 ns /iter 4 . 31 ns 8 . 85 ns ▁█▄▁▁▁▁▁▁▁
new Array ( 64 ) 17 . 94 ns /iter 13 . 40 ns 171 . 89 ns █▂▁▁▁▁▁▁▁▁
new Array ( 512 ) 188 . 05 ns /iter 246 . 88 ns 441 . 81 ns █▃▃▃▃▂▂▁▁▁
new Array ( 1024 ) 364 . 93 ns /iter 466 . 91 ns 600 . 34 ns █▄▁▁▁▅▅▃▂▁
Array . from ( 1 ) 29 . 73 ns /iter 29 . 24 ns 36 . 88 ns ▁█▄▃▂▁▁▁▁▁
Array . from ( 8 ) 33 . 96 ns /iter 32 . 99 ns 42 . 45 ns ▂█▄▂▂▁▁▁▁▁
Array . from ( 64 ) 146 . 52 ns /iter 143 . 82 ns 310 . 93 ns █▅▁▁▁▁▁▁▁▁
Array . from ( 512 ) 1 . 11 µs /iter 1 . 18 µs 1 . 34 µs ▃▅█▂▆▅▄▂▂▁
Array . from ( 1024 ) 1 . 98 µs /iter 2 . 09 µs 2 . 40 µs ▃█▃▃▇▇▄▂▁▁
summary
new Array ( $len )
5 . 42 … 8 . 33 x faster than Array . from ( $len )
┌ ┐
Array . from ( $size ) ⢠⠊
new Array ( $size ) ⢀⠔⠁
⡠⠃
⢀⠎
⡔⠁
⡠⠊
⢀⠜
⡠⠃
⡔⠁
⢀⠎
⡠⠃
⢀⠜
⢠⠊ ⣀⣀⠤⠤⠒
⡰⠁ ⣀⡠⠤⠔⠒⠊⠉
⣀⣀⣀⠤⠜ ⣀⡠⠤⠒⠊⠉
⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣔⣒⣒⣊⣉⠭⠤⠤⠤⠤⠤⠒⠊⠉
└ ┘
في حال لم تكن بحاجة إلى كل الزغب الذي يأتي مع mitata أو كنت بحاجة فقط إلى نتائج أولية، فإن mitata تصدر لبنات البناء الأساسية الخاصة بها للسماح لك ببناء الأدوات والأغلفة الخاصة بك بسهولة دون فقدان أي فوائد أساسية لاستخدام mitata.
# include " src/mitata.hpp "
int main () {
auto stats = mitata::lib::fn ([]() { /* * */ })
}
import { B , measure } from 'mitata' ;
// lowest level for power users
const stats = await measure ( function * ( state ) {
const size = state . get ( 'x' ) ;
yield ( ) => new Array ( size ) ;
} , {
args : { x : 1 } ,
batch_samples : 5 * 1024 ,
min_cpu_time : 1000 * 1e6 ,
} ) ;
// explore how magic happens
console . log ( stats . debug ) // -> jit optimized source code of benchmark
// higher level api that includes mitata's argument and range features
const b = new B ( 'new Array($x)' , state => {
const size = state . get ( 'x' ) ;
for ( const _ of state ) new Array ( size ) ;
} ) . args ( 'x' , [ 1 , 5 , 10 ] ) ;
const trial = await b . run ( ) ;
تعمل mitata على دفع حدود جافا سكريبت من خلال حلقات قياس صفرية تم إنشاؤها بواسطة JIT لتوفير توقيتات عالية الدقة. يتيح ذلك توفير ميزات مثل تردد ساعة وحدة المعالجة المركزية واكتشاف التعليمات البرمجية الميتة دون الحاجة إلى الوصول خارج صندوق حماية JS.
clk : ~ 3 . 13 GHz
cpu : Apple M2 Pro
runtime : node 22 . 8 . 0 ( arm64-darwin )
benchmark avg ( min … max ) p75 p99 ( min … top 1 % )
-------------------------------------- -------------------------------
noop 93 . 09 ps /iter 91 . 55 ps █ !
( 61.04 ps … 20 . 30 ns ) 101 . 81 ps ▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁█▁▁▁▁▂
! = benchmark was likely optimized out ( dead code elimination )
// vs other libraries
16041 . 00 ns /iter - node : perf_hooks ( performance . timerify )
5.30 ns/iter - https : //npmjs . com /benchmark
noop x 188 , 640 , 251 ops/sec ± 5 . 71 % ( 73 runs sampled )
36 . 62 ns /iter - vitest bench / https : //npmjs . com / tinybench
┌─────────┬───────────┬──────────────┬───────────────────┬──────────┬──────────┐
│ ( index ) │ Task Name │ ops/sec │ Average Time ( ns ) │ Margin │ Samples │
├─────────┼───────────┼──────────────┼───────────────────┼──────────┼──────────┤
│ 0 │ ' noop ' │ ' 27 , 308 , 739 ' │ 36 . 61831406333669 │ ' ± 0 . 14 % ' │ 13654370 │
└─────────┴───────────┴──────────────┴───────────────────┴──────────┴──────────┘
156.5685 ns/iter - https : //npmjs . com /cronometro
╔══════════════╤═════════╤═══════════════════╤═══════════╗
║ Slower tests │ Samples │ Result │ Tolerance ║
╟──────────────┼─────────┼───────────────────┼───────────╢
║ Fastest test │ Samples │ Result │ Tolerance ║
╟──────────────┼─────────┼───────────────────┼───────────╢
║ noop │ 10000 │ 6386980 . 78 op /sec │ ± 1 . 85 % ║
╚══════════════╧═════════╧═══════════════════╧═══════════╝