mmdit
0.2.1
تنفيذ طبقة واحدة من MMDiT، الذي اقترحه Esser et al. في الانتشار المستقر 3، في Pytorch
بالإضافة إلى النسخ المباشر، سيتم تعميمه أيضًا على طريقتين، حيث يمكنني تصور MMDiT للصور والصوت والنص.
سيقدم أيضًا نوعًا مرتجلًا من الاهتمام الذاتي الذي يختار بشكل تكيفي الأوزان التي سيتم استخدامها من خلال البوابات المستفادة. جاءت هذه الفكرة من التلافيف التكيفية التي طبقها كانغ وآخرون. لجيجاجان.
$ pip install mmdit
import torch
from mmdit import MMDiTBlock
# define mm dit block
block = MMDiTBlock (
dim_joint_attn = 512 ,
dim_cond = 256 ,
dim_text = 768 ,
dim_image = 512 ,
qk_rmsnorm = True
)
# mock inputs
time_cond = torch . randn ( 2 , 256 )
text_tokens = torch . randn ( 2 , 512 , 768 )
text_mask = torch . ones (( 2 , 512 )). bool ()
image_tokens = torch . randn ( 2 , 1024 , 512 )
# single block forward
text_tokens_next , image_tokens_next = block (
time_cond = time_cond ,
text_tokens = text_tokens ,
text_mask = text_mask ,
image_tokens = image_tokens
)
ويمكن استخدام نسخة معممة على هذا النحو
import torch
from mmdit . mmdit_generalized_pytorch import MMDiT
mmdit = MMDiT (
depth = 2 ,
dim_modalities = ( 768 , 512 , 384 ),
dim_joint_attn = 512 ,
dim_cond = 256 ,
qk_rmsnorm = True
)
# mock inputs
time_cond = torch . randn ( 2 , 256 )
text_tokens = torch . randn ( 2 , 512 , 768 )
text_mask = torch . ones (( 2 , 512 )). bool ()
video_tokens = torch . randn ( 2 , 1024 , 512 )
audio_tokens = torch . randn ( 2 , 256 , 384 )
# forward
text_tokens , video_tokens , audio_tokens = mmdit (
modality_tokens = ( text_tokens , video_tokens , audio_tokens ),
modality_masks = ( text_mask , None , None ),
time_cond = time_cond ,
)
@article { Esser2024ScalingRF ,
title = { Scaling Rectified Flow Transformers for High-Resolution Image Synthesis } ,
author = { Patrick Esser and Sumith Kulal and A. Blattmann and Rahim Entezari and Jonas Muller and Harry Saini and Yam Levi and Dominik Lorenz and Axel Sauer and Frederic Boesel and Dustin Podell and Tim Dockhorn and Zion English and Kyle Lacey and Alex Goodwin and Yannik Marek and Robin Rombach } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2403.03206 } ,
url = { https://api.semanticscholar.org/CorpusID:268247980 }
}
@inproceedings { Darcet2023VisionTN ,
title = { Vision Transformers Need Registers } ,
author = { Timoth'ee Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski } ,
year = { 2023 } ,
url = { https://api.semanticscholar.org/CorpusID:263134283 }
}
@article { Zhu2024HyperConnections ,
title = { Hyper-Connections } ,
author = { Defa Zhu and Hongzhi Huang and Zihao Huang and Yutao Zeng and Yunyao Mao and Banggu Wu and Qiyang Min and Xun Zhou } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2409.19606 } ,
url = { https://api.semanticscholar.org/CorpusID:272987528 }
}