orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or other third-party libraries. It serializes dataclass, datetime, numpy, and UUID instances natively.
orjson.dumps() is
something like 10x as fast as json
, serializes
common types and subtypes, has a default
parameter for the caller to specify
how to serialize arbitrary types, and has a number of flags controlling output.
orjson.loads()
is something like 2x as fast as json
, and is strictly compliant with UTF-8 and
RFC 8259 ("The JavaScript Object Notation (JSON) Data Interchange Format").
Reading from and writing to files, line-delimited JSON files, and so on is not provided by the library.
orjson supports CPython 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, and 3.14.
It distributes amd64/x86_64, i686/x86, aarch64/armv8, arm7, POWER/ppc64le, and s390x wheels for Linux, amd64 and aarch64 wheels for macOS, and amd64 and i686/x86 wheels for Windows.
orjson does not and will not support PyPy, embedded Python builds for Android/iOS, or PEP 554 subinterpreters.
Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.
orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there. There is a CHANGELOG available in the repository.
To install a wheel from PyPI, install the orjson
package.
In requirements.in
or requirements.txt
format, specify:
orjson >= 3.10,<4
In pyproject.toml
format, specify:
orjson = "^3.10"
To build a wheel, see packaging.
This is an example of serializing, with options specified, and deserializing:
>>> import orjson, datetime, numpy
>>> data = {
"type": "job",
"created_at": datetime.datetime(1970, 1, 1),
"status": "?",
"payload": numpy.array([[1, 2], [3, 4]]),
}
>>> orjson.dumps(data, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY)
b'{"type":"job","created_at":"1970-01-01T00:00:00+00:00","status":"xf0x9fx86x97","payload":[[1,2],[3,4]]}'
>>> orjson.loads(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '?', 'payload': [[1, 2], [3, 4]]}
orjson version 3 serializes more types than version 2. Subclasses of str
,
int
, dict
, and list
are now serialized. This is faster and more similar
to the standard library. It can be disabled with
orjson.OPT_PASSTHROUGH_SUBCLASS
.dataclasses.dataclass
instances
are now serialized by default and cannot be customized in a
default
function unless option=orjson.OPT_PASSTHROUGH_DATACLASS
is
specified. uuid.UUID
instances are serialized by default.
For any type that is now serialized,
implementations in a default
function and options enabling them can be
removed but do not need to be. There was no change in deserialization.
To migrate from the standard library, the largest difference is that
orjson.dumps
returns bytes
and json.dumps
returns a str
.
Users with dict
objects using non-str
keys should specify option=orjson.OPT_NON_STR_KEYS
.
sort_keys
is replaced by option=orjson.OPT_SORT_KEYS
.
indent
is replaced by option=orjson.OPT_INDENT_2
and other levels of indentation are not
supported.
ensure_ascii
is probably not relevant today and UTF-8 characters cannot be
escaped to ASCII.
def dumps(
__obj: Any,
default: Optional[Callable[[Any], Any]] = ...,
option: Optional[int] = ...,
) -> bytes: ...
dumps()
serializes Python objects to JSON.
It natively serializes
str
, dict
, list
, tuple
, int
, float
, bool
, None
,
dataclasses.dataclass
, typing.TypedDict
, datetime.datetime
,
datetime.date
, datetime.time
, uuid.UUID
, numpy.ndarray
, and
orjson.Fragment
instances. It supports arbitrary types through default
. It
serializes subclasses of str
, int
, dict
, list
,
dataclasses.dataclass
, and enum.Enum
. It does not serialize subclasses
of tuple
to avoid serializing namedtuple
objects as arrays. To avoid
serializing subclasses, specify the option orjson.OPT_PASSTHROUGH_SUBCLASS
.
The output is a bytes
object containing UTF-8.
The global interpreter lock (GIL) is held for the duration of the call.
It raises JSONEncodeError
on an unsupported type. This exception message
describes the invalid object with the error message
Type is not JSON serializable: ...
. To fix this, specify
default.
It raises JSONEncodeError
on a str
that contains invalid UTF-8.
It raises JSONEncodeError
on an integer that exceeds 64 bits by default or,
with OPT_STRICT_INTEGER
, 53 bits.
It raises JSONEncodeError
if a dict
has a key of a type other than str
,
unless OPT_NON_STR_KEYS
is specified.
It raises JSONEncodeError
if the output of default
recurses to handling by
default
more than 254 levels deep.
It raises JSONEncodeError
on circular references.
It raises JSONEncodeError
if a tzinfo
on a datetime object is
unsupported.
JSONEncodeError
is a subclass of TypeError
. This is for compatibility
with the standard library.
If the failure was caused by an exception in default
then
JSONEncodeError
chains the original exception as __cause__
.
To serialize a subclass or arbitrary types, specify default
as a
callable that returns a supported type. default
may be a function,
lambda, or callable class instance. To specify that a type was not
handled by default
, raise an exception such as TypeError
.
>>> import orjson, decimal
>>>
def default(obj):
if isinstance(obj, decimal.Decimal):
return str(obj)
raise TypeError
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"))
JSONEncodeError: Type is not JSON serializable: decimal.Decimal
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
b'"0.0842389659712649442845"'
>>> orjson.dumps({1, 2}, default=default)
orjson.JSONEncodeError: Type is not JSON serializable: set
The default
callable may return an object that itself
must be handled by default
up to 254 times before an exception
is raised.
It is important that default
raise an exception if a type cannot be handled.
Python otherwise implicitly returns None
, which appears to the caller
like a legitimate value and is serialized:
>>> import orjson, json
>>>
def default(obj):
if isinstance(obj, decimal.Decimal):
return str(obj)
>>> orjson.dumps({"set":{1, 2}}, default=default)
b'{"set":null}'
>>> json.dumps({"set":{1, 2}}, default=default)
'{"set":null}'
To modify how data is serialized, specify option
. Each option
is an integer
constant in orjson
. To specify multiple options, mask them together, e.g.,
option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC
.
Append n
to the output. This is a convenience and optimization for the
pattern of dumps(...) + "n"
. bytes
objects are immutable and this
pattern copies the original contents.
>>> import orjson
>>> orjson.dumps([])
b"[]"
>>> orjson.dumps([], option=orjson.OPT_APPEND_NEWLINE)
b"[]n"
Pretty-print output with an indent of two spaces. This is equivalent to
indent=2
in the standard library. Pretty printing is slower and the output
larger. orjson is the fastest compared library at pretty printing and has
much less of a slowdown to pretty print than the standard library does. This
option is compatible with all other options.
>>> import orjson
>>> orjson.dumps({"a": "b", "c": {"d": True}, "e": [1, 2]})
b'{"a":"b","c":{"d":true},"e":[1,2]}'
>>> orjson.dumps(
{"a": "b", "c": {"d": True}, "e": [1, 2]},
option=orjson.OPT_INDENT_2
)
b'{n "a": "b",n "c": {n "d": truen },n "e": [n 1,n 2n ]n}'
If displayed, the indentation and linebreaks appear like this:
{
"a": "b",
"c": {
"d": true
},
"e": [
1,
2
]
}
This measures serializing the github.json fixture as compact (52KiB) or pretty (64KiB):
Library | compact (ms) | pretty (ms) | vs. orjson |
---|---|---|---|
orjson | 0.01 | 0.02 | 1 |
json | 0.13 | 0.54 | 34 |
This measures serializing the citm_catalog.json fixture, more of a worst case due to the amount of nesting and newlines, as compact (489KiB) or pretty (1.1MiB):
Library | compact (ms) | pretty (ms) | vs. orjson |
---|---|---|---|
orjson | 0.25 | 0.45 | 1 |
json | 3.01 | 24.42 | 54.4 |
This can be reproduced using the pyindent
script.
Serialize datetime.datetime
objects without a tzinfo
as UTC. This
has no effect on datetime.datetime
objects that have tzinfo
set.
>>> import orjson, datetime
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0),
)
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0),
option=orjson.OPT_NAIVE_UTC,
)
b'"1970-01-01T00:00:00+00:00"'
Serialize dict
keys of type other than str
. This allows dict
keys
to be one of str
, int
, float
, bool
, None
, datetime.datetime
,
datetime.date
, datetime.time
, enum.Enum
, and uuid.UUID
. For comparison,
the standard library serializes str
, int
, float
, bool
or None
by
default. orjson benchmarks as being faster at serializing non-str
keys
than other libraries. This option is slower for str
keys than the default.
>>> import orjson, datetime, uuid
>>> orjson.dumps(
{uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
option=orjson.OPT_NON_STR_KEYS,
)
b'{"7202d115-7ff3-4c81-a7c1-2a1f067b1ece":[1,2,3]}'
>>> orjson.dumps(
{datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
option=orjson.OPT_NON_STR_KEYS | orjson.OPT_NAIVE_UTC,
)
b'{"1970-01-01T00:00:00+00:00":[1,2,3]}'
These types are generally serialized how they would be as
values, e.g., datetime.datetime
is still an RFC 3339 string and respects
options affecting it. The exception is that int
serialization does not
respect OPT_STRICT_INTEGER
.
This option has the risk of creating duplicate keys. This is because non-str
objects may serialize to the same str
as an existing key, e.g.,
{"1": true, 1: false}
. The last key to be inserted to the dict
will be
serialized last and a JSON deserializer will presumably take the last
occurrence of a key (in the above, false
). The first value will be lost.
This option is compatible with orjson.OPT_SORT_KEYS
. If sorting is used,
note the sort is unstable and will be unpredictable for duplicate keys.
>>> import orjson, datetime
>>> orjson.dumps(
{"other": 1, datetime.date(1970, 1, 5): 2, datetime.date(1970, 1, 3): 3},
option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS
)
b'{"1970-01-03":3,"1970-01-05":2,"other":1}'
This measures serializing 589KiB of JSON comprising a list
of 100 dict
in which each dict
has both 365 randomly-sorted int
keys representing epoch
timestamps as well as one str
key and the value for each key is a
single integer. In "str keys", the keys were converted to str
before
serialization, and orjson still specifes option=orjson.OPT_NON_STR_KEYS
(which is always somewhat slower).
Library | str keys (ms) | int keys (ms) | int keys sorted (ms) |
---|---|---|---|
orjson | 0.5 | 0.93 | 2.08 |
json | 2.72 | 3.59 |
json is blank because it
raises TypeError
on attempting to sort before converting all keys to str
.
This can be reproduced using the pynonstr
script.
Do not serialize the microsecond
field on datetime.datetime
and
datetime.time
instances.
>>> import orjson, datetime
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
)
b'"1970-01-01T00:00:00.000001"'
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
option=orjson.OPT_OMIT_MICROSECONDS,
)
b'"1970-01-01T00:00:00"'
Passthrough dataclasses.dataclass
instances to default
. This allows
customizing their output but is much slower.
>>> import orjson, dataclasses
>>>
@dataclasses.dataclass
class User:
id: str
name: str
password: str
def default(obj):
if isinstance(obj, User):
return {"id": obj.id, "name": obj.name}
raise TypeError
>>> orjson.dumps(User("3b1", "asd", "zxc"))
b'{"id":"3b1","name":"asd","password":"zxc"}'
>>> orjson.dumps(User("3b1", "asd", "zxc"), option=orjson.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not JSON serializable: User
>>> orjson.dumps(
User("3b1", "asd", "zxc"),
option=orjson.OPT_PASSTHROUGH_DATACLASS,
default=default,
)
b'{"id":"3b1","name":"asd"}'
Passthrough datetime.datetime
, datetime.date
, and datetime.time
instances
to default
. This allows serializing datetimes to a custom format, e.g.,
HTTP dates:
>>> import orjson, datetime
>>>
def default(obj):
if isinstance(obj, datetime.datetime):
return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
raise TypeError
>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)})
b'{"created_at":"1970-01-01T00:00:00"}'
>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)}, option=orjson.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not JSON serializable: datetime.datetime
>>> orjson.dumps(
{"created_at": datetime.datetime(1970, 1, 1)},
option=orjson.OPT_PASSTHROUGH_DATETIME,
default=default,
)
b'{"created_at":"Thu, 01 Jan 1970 00:00:00 GMT"}'
This does not affect datetimes in dict
keys if using OPT_NON_STR_KEYS.
Passthrough subclasses of builtin types to default
.
>>> import orjson
>>>
class Secret(str):
pass
def default(obj):
if isinstance(obj, Secret):
return "******"
raise TypeError
>>> orjson.dumps(Secret("zxc"))
b'"zxc"'
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not JSON serializable: Secret
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'"******"'
This does not affect serializing subclasses as dict
keys if using
OPT_NON_STR_KEYS.
This is deprecated and has no effect in version 3. In version 2 this was
required to serialize dataclasses.dataclass
instances. For more, see
dataclass.
Serialize numpy.ndarray
instances. For more, see
numpy.
This is deprecated and has no effect in version 3. In version 2 this was
required to serialize uuid.UUID
instances. For more, see
UUID.
Serialize dict
keys in sorted order. The default is to serialize in an
unspecified order. This is equivalent to sort_keys=True
in the standard
library.
This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.
>>> import orjson
>>> orjson.dumps({"b": 1, "c": 2, "a": 3})
b'{"b":1,"c":2,"a":3}'
>>> orjson.dumps({"b": 1, "c": 2, "a": 3}, option=orjson.OPT_SORT_KEYS)
b'{"a":3,"b":1,"c":2}'
This measures serializing the twitter.json fixture unsorted and sorted:
Library | unsorted (ms) | sorted (ms) | vs. orjson |
---|---|---|---|
orjson | 0.11 | 0.3 | 1 |
json | 1.36 | 1.93 | 6.4 |
The benchmark can be reproduced using the pysort
script.
The sorting is not collation/locale-aware:
>>> import orjson
>>> orjson.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson.OPT_SORT_KEYS)
b'{"A":3,"a":1,"xc3xa4":2}'
This is the same sorting behavior as the standard library.
dataclass
also serialize as maps but this has no effect on them.
Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library. For more, see int.
Serialize a UTC timezone on datetime.datetime
instances as Z
instead
of +00:00
.
>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
)
b'"1970-01-01T00:00:00+00:00"'
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
option=orjson.OPT_UTC_Z
)
b'"1970-01-01T00:00:00Z"'
orjson.Fragment
includes already-serialized JSON in a document. This is an
efficient way to include JSON blobs from a cache, JSONB field, or separately
serialized object without first deserializing to Python objects via loads()
.
>>> import orjson
>>> orjson.dumps({"key": "zxc", "data": orjson.Fragment(b'{"a": "b", "c": 1}')})
b'{"key":"zxc","data":{"a": "b", "c": 1}}'
It does no reformatting: orjson.OPT_INDENT_2
will not affect a
compact blob nor will a pretty-printed JSON blob be rewritten as compact.
The input must be bytes
or str
and given as a positional argument.
This raises orjson.JSONEncodeError
if a str
is given and the input is
not valid UTF-8. It otherwise does no validation and it is possible to
write invalid JSON. This does not escape characters. The implementation is
tested to not crash if given invalid strings or invalid JSON.
def loads(__obj: Union[bytes, bytearray, memoryview, str]) -> Any: ...
loads()
deserializes JSON to Python objects. It deserializes to dict
,
list
, int
, float
, str
, bool
, and None
objects.
bytes
, bytearray
, memoryview
, and str
input are accepted. If the input
exists as a memoryview
, bytearray
, or bytes
object, it is recommended to
pass these directly rather than creating an unnecessary str
object. That is,
orjson.loads(b"{}")
instead of orjson.loads(b"{}".decode("utf-8"))
. This
has lower memory usage and lower latency.
The input must be valid UTF-8.
orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 2048 entries are stored.
The global interpreter lock (GIL) is held for the duration of the call.
It raises JSONDecodeError
if given an invalid type or invalid
JSON. This includes if the input contains NaN
, Infinity
, or -Infinity
,
which the standard library allows, but is not valid JSON.
It raises JSONDecodeError
if a combination of array or object recurses
1024 levels deep.
JSONDecodeError
is a subclass of json.JSONDecodeError
and ValueError
.
This is for compatibility with the standard library.
orjson serializes instances of dataclasses.dataclass
natively. It serializes
instances 40-50x as fast as other libraries and avoids a severe slowdown seen
in other libraries compared to serializing dict
.
It is supported to pass all variants of dataclasses, including dataclasses
using __slots__
, frozen dataclasses, those with optional or default
attributes, and subclasses. There is a performance benefit to not
using __slots__
.
Library | dict (ms) | dataclass (ms) | vs. orjson |
---|---|---|---|
orjson | 0.43 | 0.95 | 1 |
json | 5.81 | 38.32 | 40 |
This measures serializing 555KiB of JSON, orjson natively and other libraries
using default
to serialize the output of dataclasses.asdict()
. This can be
reproduced using the pydataclass
script.
Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:
>>> import dataclasses, orjson, typing
@dataclasses.dataclass
class Member:
id: int
active: bool = dataclasses.field(default=False)
@dataclasses.dataclass
class Object:
id: int
name: str
members: typing.List[Member]
>>> orjson.dumps(Object(1, "a", [Member(1, True), Member(2)]))
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'
orjson serializes datetime.datetime
objects to
RFC 3339 format,
e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and is
compatible with isoformat()
in the standard library.
>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo("Australia/Adelaide"))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
datetime.datetime(2100, 9, 1, 21, 55, 2).replace(tzinfo=zoneinfo.ZoneInfo("UTC"))
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
datetime.datetime(2100, 9, 1, 21, 55, 2)
)
b'"2100-09-01T21:55:02"'
datetime.datetime
supports instances with a tzinfo
that is None
,
datetime.timezone.utc
, a timezone instance from the python3.9+ zoneinfo
module, or a timezone instance from the third-party pendulum
, pytz
, or
dateutil
/arrow
libraries.
It is fastest to use the standard library's zoneinfo.ZoneInfo
for timezones.
datetime.time
objects must not have a tzinfo
.
>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'
datetime.date
objects will always serialize.
>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'
Errors with tzinfo
result in JSONEncodeError
being raised.
To disable serialization of datetime
objects specify the option
orjson.OPT_PASSTHROUGH_DATETIME
.
To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option
orjson.OPT_UTC_Z
.
To assume datetimes without timezone are UTC, use the option orjson.OPT_NAIVE_UTC
.
orjson serializes enums natively. Options apply to their values.
>>> import enum, datetime, orjson
>>>
class DatetimeEnum(enum.Enum):
EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> orjson.dumps(DatetimeEnum.EPOCH)
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(DatetimeEnum.EPOCH, option=orjson.OPT_NAIVE_UTC)
b'"1970-01-01T00:00:00+00:00"'
Enums with members that are not supported types can be serialized using
default
:
>>> import enum, orjson
>>>
class Custom:
def __init__(self, val):
self.val = val
def default(obj):
if isinstance(obj, Custom):
return obj.val
raise TypeError
class CustomEnum(enum.Enum):
ONE = Custom(1)
>>> orjson.dumps(CustomEnum.ONE, default=default)
b'1'
orjson serializes and deserializes double precision floats with no loss of precision and consistent rounding.
orjson.dumps()
serializes Nan, Infinity, and -Infinity, which are not
compliant JSON, as null
:
>>> import orjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'
orjson serializes and deserializes 64-bit integers by default. The range
supported is a signed 64-bit integer's minimum (-9223372036854775807) to
an unsigned 64-bit integer's maximum (18446744073709551615). This
is widely compatible, but there are implementations
that only support 53-bits for integers, e.g.,
web browsers. For those implementations, dumps()
can be configured to
raise a JSONEncodeError
on values exceeding the 53-bit range.
>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
orjson natively serializes numpy.ndarray
and individual
numpy.float64
, numpy.float32
, numpy.float16
(numpy.half
),
numpy.int64
, numpy.int32
, numpy.int16
, numpy.int8
,
numpy.uint64
, numpy.uint32
, numpy.uint16
, numpy.uint8
,
numpy.uintp
, numpy.intp
, numpy.datetime64
, and numpy.bool
instances.
orjson is compatible with both numpy v1 and v2.
orjson is faster than all compared libraries at serializing
numpy instances. Serializing numpy data requires specifying
option=orjson.OPT_SERIALIZE_NUMPY
.
>>> import orjson, numpy
>>> orjson.dumps(
numpy.array([[1, 2, 3], [4, 5, 6]]),
option=orjson.OPT_SERIALIZE_NUMPY,
)
b'[[1,2,3],[4,5,6]]'
The array must be a contiguous C array (C_CONTIGUOUS
) and one of the
supported datatypes.
Note a difference between serializing numpy.float32
using ndarray.tolist()
or orjson.dumps(..., option=orjson.OPT_SERIALIZE_NUMPY)
: tolist()
converts
to a double
before serializing and orjson's native path does not. This
can result in different rounding.
numpy.datetime64
instances are serialized as RFC 3339 strings and
datetime options affect them.
>>> import orjson, numpy
>>> orjson.dumps(
numpy.datetime64("2021-01-01T00:00:00.172"),
option=orjson.OPT_SERIALIZE_NUMPY,
)
b'"2021-01-01T00:00:00.172000"'
>>> orjson.dumps(
numpy.datetime64("2021-01-01T00:00:00.172"),
option=(
orjson.OPT_SERIALIZE_NUMPY |
orjson.OPT_NAIVE_UTC |
orjson.OPT_OMIT_MICROSECONDS
),
)
b'"2021-01-01T00:00:00+00:00"'
If an array is not a contiguous C array, contains an unsupported datatype,
or contains a numpy.datetime64
using an unsupported representation
(e.g., picoseconds), orjson falls through to default
. In default
,
obj.tolist()
can be specified.
If an array is not in the native endianness, e.g., an array of big-endian values
on a little-endian system, orjson.JSONEncodeError
is raised.
If an array is malformed, orjson.JSONEncodeError
is raised.
This measures serializing 92MiB of JSON from an numpy.ndarray
with
dimensions of (50000, 100)
and numpy.float64
values:
Library | Latency (ms) | RSS diff (MiB) | vs. orjson |
---|---|---|---|
orjson | 105 | 105 | 1 |
json | 1,481 | 295 | 14.2 |
This measures serializing 100MiB of JSON from an numpy.ndarray
with
dimensions of (100000, 100)
and numpy.int32
values:
Library | Latency (ms) | RSS diff (MiB) | vs. orjson |
---|---|---|---|
orjson | 68 | 119 | 1 |
json | 684 | 501 | 10.1 |
This measures serializing 105MiB of JSON from an numpy.ndarray
with
dimensions of (100000, 200)
and numpy.bool
values:
Library | Latency (ms) | RSS diff (MiB) | vs. orjson |
---|---|---|---|
orjson | 50 | 125 | 1 |
json | 573 | 398 | 11.5 |
In these benchmarks, orjson serializes natively and json
serializes
ndarray.tolist()
via default
. The RSS column measures peak memory
usage during serialization. This can be reproduced using the pynumpy
script.
orjson does not have an installation or compilation dependency on numpy. The
implementation is independent, reading numpy.ndarray
using
PyArrayInterface
.
orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "ud800", that are invalid UTF-8.
If orjson.dumps()
is given a str
that does not contain valid UTF-8,
orjson.JSONEncodeError
is raised. If loads()
receives invalid UTF-8,
orjson.JSONDecodeError
is raised.
>>> import orjson, json
>>> orjson.dumps('ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> json.dumps('ud800')
'"\ud800"'
>>> orjson.loads('"\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> json.loads('"\ud800"')
'ud800'
To make a best effort at deserializing bad input, first decode bytes
using
the replace
or lossy
argument for errors
:
>>> import orjson
>>> orjson.loads(b'"xedxa0x80"')
JSONDecodeError: str is not valid UTF-8: surrogates not allowed
>>> orjson.loads(b'"xedxa0x80"'.decode("utf-8", "replace"))
'���'
orjson serializes uuid.UUID
instances to
RFC 4122 format, e.g.,
"f81d4fae-7dec-11d0-a765-00a0c91e6bf6".
>>> import orjson, uuid
>>> orjson.dumps(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'
The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.
orjson is the most correct of the compared libraries. This graph shows how each library handles a combined 342 JSON fixtures from the JSONTestSuite and nativejson-benchmark tests:
Library | Invalid JSON documents not rejected | Valid JSON documents not deserialized |
---|---|---|
orjson | 0 | 0 |
json | 17 | 0 |
This shows that all libraries deserialize valid JSON but only orjson correctly rejects the given invalid JSON fixtures. Errors are largely due to accepting invalid strings and numbers.
The graph above can be reproduced using the pycorrectness
script.
Serialization and deserialization performance of orjson is consistently better
than the standard library's json
. The graphs below illustrate a few commonly
used documents.
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
orjson | 0.1 | 8453 | 1 |
json | 1.3 | 765 | 11.1 |
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
orjson | 0.5 | 1889 | 1 |
json | 2.2 | 453 | 4.2 |
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
orjson | 0.01 | 103693 | 1 |
json | 0.13 | 7648 | 13.6 |
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
orjson | 0.04 | 23264 | 1 |
json | 0.1 | 10430 | 2.2 |
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
orjson | 0.3 | 3975 | 1 |
json | 3 | 338 | 11.8 |
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
orjson | 1.3 | 781 | 1 |
json | 4 | 250 | 3.1 |
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
orjson | 2.5 | 399 | 1 |
json | 29.8 | 33 | 11.9 |
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
orjson | 3 | 333 | 1 |
json | 18 | 55 | 6 |
The above was measured using Python 3.11.10 in a Fedora 42 container on an
x86-64-v4 machine using the
orjson-3.10.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
artifact on PyPI. The latency results can be reproduced using the pybench
script.
Probably pip
needs to be upgraded to version 20.3 or later to support
the latest manylinux_x_y or universal2 wheel formats.
This happens when there are no binary wheels (like manylinux) for your
platform on PyPI. You can install Rust through
rustup
or a package manager and then it will compile.
No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.
str
?No. bytes
is the correct type for a serialized blob.
No. orjsonl may be appropriate.
No, it supports RFC 8259.
To package orjson requires at least Rust 1.72 and the maturin build tool. The recommended build command is:
maturin build --release --strip
It benefits from also having a C build environment to compile a faster
deserialization backend. See this project's manylinux_2_28
builds for an
example using clang and LTO.
The project's own CI tests against nightly-2024-11-22
and stable 1.72. It
is prudent to pin the nightly version because that channel can introduce
breaking changes. There is a significant performance benefit to using
nightly.
orjson is tested for amd64, aarch64, and i686 on Linux and cross-compiles for arm7, ppc64le, and s390x. It is tested for either aarch64 or amd64 on macOS and cross-compiles for the other, depending on version. For Windows it is tested on amd64 and i686.
There are no runtime dependencies other than libc.
The source distribution on PyPI contains all dependencies' source and can be
built without network access. The file can be downloaded from
https://files.pythonhosted.org/packages/source/o/orjson/orjson-${version}.tar.gz
.
orjson's tests are included in the source distribution on PyPI. The
requirements to run the tests are specified in test/requirements.txt
. The
tests should be run as part of the build. It can be run with
pytest -q test
.
orjson was written by ijl