Implementasi resmi "Sinonim Kode Penting: Jaringan Pencocokan Sinonim Ganda untuk Pengodean ICD Otomatis" [ACL 2022]
Semua kode diuji dengan Python 3.7, PyTorch 1.7.0. Perlu menginstal opt_einsum untuk perhitungan einsum. Setidaknya diperlukan GPU 32GB untuk melatih pengaturan penuh MIMIC-III.
Kami hanya menempatkan beberapa sampel untuk setiap dataset. Seseorang perlu mendapatkan lisensi untuk mengunduh kumpulan data MIMIC-III. Setelah Anda mendapatkan kumpulan data MIMIC-III, ikuti caml-mimic untuk melakukan praproses kumpulan data tersebut. Anda harus mendapatkan train_full.csv , test_full.csv , dev_full.csv , train_50.csv , test_50.csv , dev_50.csv setelah prapemrosesan. Silakan letakkan di bawah sample_data/mimic3 . Maka Anda harus menggunakan preprocess/generate_data_new.ipynb untuk menghasilkan kumpulan data format json.
Silakan unduh word2vec_sg0_100.model dari LAAT. Anda perlu mengubah jalur penyematan kata.
MIMIC-III Penuh (1 GPU):
CUDA_VISIBLE_DEVICES=0 python main.py --n_gpu 1 --version mimic3 --combiner lstm --rnn_dim 256 --num_layers 2 --decoder MultiLabelMultiHeadLAATV2 --attention_head 4 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 2 --gradient_accumulation_steps 8 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1 --term_count 4 --sort_method random --word_embedding_path word_embedding_path
MIMIC-III Penuh (8 GPU):
NCCL_IB_DISABLE=1 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node 8 --master_port=1212 --use_env main.py --n_gpu 8 --version mimic3 --combiner lstm --rnn_dim 256 --num_layers 2 --decoder MultiLabelMultiHeadLAATV2 --attention_head 4 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 2 --gradient_accumulation_steps 1 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1 --term_count 4 --sort_method random --word_embedding_path word_embedding_path
MIMIK-III 50:
CUDA_VISIBLE_DEVICES=0 python main.py --version mimic3-50 --combiner lstm --rnn_dim 512 --num_layers 1 --decoder MultiLabelMultiHeadLAATV2 --attention_head 8 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 16 --gradient_accumulation_steps 1 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1 --term_count 8 --word_embedding_path word_embedding_path
python eval_model.py MODEL_CHECKPOINT
pos pemeriksaan mimik3
pos pemeriksaan meniru3-50
@inproceedings{yuan-etal-2022-code,
title = "Code Synonyms Do Matter: Multiple Synonyms Matching Network for Automatic {ICD} Coding",
author = "Yuan, Zheng and
Tan, Chuanqi and
Huang, Songfang",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-short.91",
pages = "808--814",
abstract = "Automatic ICD coding is defined as assigning disease codes to electronic medical records (EMRs).Existing methods usually apply label attention with code representations to match related text snippets.Unlike these works that model the label with the code hierarchy or description, we argue that the code synonyms can provide more comprehensive knowledge based on the observation that the code expressions in EMRs vary from their descriptions in ICD. By aligning codes to concepts in UMLS, we collect synonyms of every code. Then, we propose a multiple synonyms matching network to leverage synonyms for better code representation learning, and finally help the code classification. Experiments on the MIMIC-III dataset show that our proposed method outperforms previous state-of-the-art methods.",
}