ollama docker web application
1.0.0
Instruksi video klik di sini
Lihat pdf klik di sini
Lihat Kursus dan Peta Jalan Terperinci klik di sini
Proyek ini merupakan aplikasi chatting yang mengintegrasikan model bahasa besar (LLM) yang menggunakan:
grafik LR
A[Permintaan Pengguna] --> B[FastAPI Backend]
B --> C[Mesin Templat]
C --> D[Rantai Rantai Lang]
D --> E[Ollama LLM]
D --> F[(SQLite DB)]
subgraf Pemrosesan Templat
C --> G[Templat Perintah]
G --> H[Info Tabel]
H --> saya[Pertanyaan]
akhir
subgraf Pipa LangChain
D --> J[llm_chain]
J --> K[StrOutputParser]
akhir
subgraf Operasi Basis Data
F --> L[Obrolan Toko]
F --> M[Jalankan SQL]
akhir
git clone < repository-url >
cd < project-folder >
.
├── docker-compose.yml
├── fastapi/
│ ├── Dockerfile
│ ├── app.py
│ ├── requirements.txt
│ └── ...
├── nextjs-app/
│ ├── Dockerfile
│ ├── package.json
│ └── ...
└── ollama/
├── Dockerfile
└── pull-qwen.sh
version : ' 3.8 '
services :
frontend :
build : ./nextjs-app
ports :
- " 3000:3000 "
volumes :
- ./nextjs-app:/app
depends_on :
- backend
backend :
build : ./fastapi
ports :
- " 8000:8000 "
volumes :
- ./fastapi:/app
depends_on :
- ollama-server
ollama-server :
build : ./ollama
volumes :
- ollama_data:/root/.ollama
deploy :
resources :
reservations :
devices :
- driver : nvidia
count : 1
capabilities : [gpu]
volumes :
ollama_data :
Backend FastAPI memproses permintaan dari frontend dan berinteraksi dengan Ollama LLM. Kode utama di app.py
:
import requests
from fastapi import FastAPI , Response
# Database
from db import (
create_chat ,
get_all_chats ,
get_chat_by_id ,
delete_chat ,
DataChat ,
path_db
@ app . get ( '/ask' )
def ask ( prompt : str ):
# Langchain
from langchain_ollama import OllamaLLM # Ollama model
from langchain_ollama . llms import BaseLLM # Lớp cơ sở của LLM
from langchain . chains . llm import LLMChain # xử lí chuỗi các LLM
from langchain . chains . sql_database . query import create_sql_query_chain # tạo câu truy vấn cơ sở dữ liệu từ llm
from langchain . prompts import PromptTemplate # tạo câu truy vấn từ mẫu
from langchain_community . tools import QuerySQLDataBaseTool # công cụ truy vấn cơ sở dữ liệu
from langchain . sql_database import SQLDatabase # cơ sở dữ liệu
from langchain_core . output_parsers import StrOutputParser , PydanticOutputParser # xử lí kết quả trả về là kiểu dữ liệu chuỗi
from langchain_core . runnables import RunnablePassthrough # truyền đa dạng đối số
from operator import itemgetter # lấy giá trị từ dict
# Cache
from langchain . cache import InMemoryCache
from langchain . globals import set_llm_cache
#--------------------------------------------------
llm = OllamaLLM (
# Utility
from utils import get_sql_from_answer_llm
)
#test on docker
url_docker = "http://ollama-server:11434"
#test on local
url_local = "http://localhost:11434"
model = "qwen2.5-coder:0.5b"
app = FastAPI ()
llm = OllamaLLM (
base_url = url_local ,
model = model
)
@ app . get ( '/' )
cache = InMemoryCache ()
set_llm_cache ( cache )
@ app . get ( '/ask' )
template = PromptTemplate . from_template (
"""
Từ các bảng cơ sở dữ đã có: {tables}
Tạo câu truy vấn cơ sở dữ liệu từ câu hỏi sau:
{question}
Trả lời ở đây:
"""
)
# nếu câu hỏi không liên quan đến các bảng cơ sở dữ liệu đã có thì trả lời là "Không liên quan đến các bảng cơ sở dữ liệu đã có", và nếu câu hỏi gây nguy hiểm đến cơ sở dữ liệu thì trả lời là "Không thể trả lời câu hỏi này"
llm_chain = (
template |
llm |
StrOutputParser ()
)
db = SQLDatabase . from_uri ( f"sqlite:/// { path_db } " )
app = FastAPI ()
@ app . get ( '/' )
def home ():
return { "hello" : "World" }
@ app . get ( '/ask' )
def ask ( prompt : str ):
# name of the service is ollama-server, is hostname by bridge to connect same network
# res = requests.post('http://ollama-server:11434/api/generate', json={
# "prompt": prompt,
# "stream" : False,
# "model" : "qwen2.5-coder:0.5b"
# })
res = llm_chain . invoke ({
"tables" : f''' { db . get_table_info ( db . get_usable_table_names ()) } ''' ,
"question" : prompt
})
response = ""
if isinstance ( res , str ):
response = res
else :
response = res . text
# Store chat in database
chat = create_chat ( message = prompt , response = response )
try :
data_db = db . run ( get_sql_from_answer_llm ( response ))
except Exception as e :
data_db = str ( e )
return {
"answer" : response ,
"data_db" : data_db
}
Penjelasan komponen utama:
Server Ollama menjalankan model Qwen dan mengekspos API. Pengaturan di pull-qwen.sh
:
./bin/ollama serve &
pid= $!
sleep 5
echo " Pulling qwen2.5-coder model "
ollama pull qwen2.5-coder:0.5b
wait $pid
Frontend menggunakan Next.js 13+ dengan App Router dan Tailwind CSS. Lihat konfigurasi di:
{
"name" : " nextjs-app " ,
"version" : " 0.1.0 " ,
"private" : true ,
"scripts" : {
"dev" : " next dev --turbopack " ,
"build" : " next build " ,
"start" : " next start " ,
"lint" : " next lint "
},
"dependencies" : {
"react" : " 19.0.0-rc-66855b96-20241106 " ,
"react-dom" : " 19.0.0-rc-66855b96-20241106 " ,
"next" : " 15.0.3 "
},
"devDependencies" : {
"typescript" : " ^5 " ,
"@types/node" : " ^20 " ,
"@types/react" : " ^18 " ,
"@types/react-dom" : " ^18 " ,
"postcss" : " ^8 " ,
"tailwindcss" : " ^3.4.1 "
}
}
Silakan baca CONTRIBUTING.md untuk detail lebih lanjut tentang proses kontribusi kode.
Proyek ini didistribusikan di bawah lisensi MIT. Lihat file LISENSI untuk lebih jelasnya.