Diperbarui di Pytorch 1.5
Anda dapat menemukan kodenya di sini
Pytorch adalah kerangka pembelajaran mendalam sumber terbuka yang menyediakan cara cerdas untuk membuat model ML. Meskipun dokumentasinya dibuat dengan baik, saya masih melihat bahwa kebanyakan orang tidak menulis kode dengan baik dan terorganisir di PyTorch.
Hari ini, kita akan melihat cara menggunakan tiga blok penyusun utama PyTorch: Module, Sequential and ModuleList
. Kami akan memulai dengan sebuah contoh dan secara berulang kami akan membuatnya lebih baik.
Keempat kelas ini dimasukkan ke dalam torch.nn
import torch . nn as nn
# nn.Module
# nn.Sequential
# nn.Module
Modul adalah blok penyusun utama, yang mendefinisikan kelas dasar untuk semua jaringan saraf dan Anda HARUS membuat subkelasnya.
Mari buat pengklasifikasi CNN klasik sebagai contoh:
import torch . nn . functional as F
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , n_classes ):
super (). __init__ ()
self . conv1 = nn . Conv2d ( in_c , 32 , kernel_size = 3 , stride = 1 , padding = 1 )
self . bn1 = nn . BatchNorm2d ( 32 )
self . conv2 = nn . Conv2d ( 32 , 64 , kernel_size = 3 , stride = 1 , padding = 1 )
self . bn2 = nn . BatchNorm2d ( 64 )
self . fc1 = nn . Linear ( 64 * 28 * 28 , 1024 )
self . fc2 = nn . Linear ( 1024 , n_classes )
def forward ( self , x ):
x = self . conv1 ( x )
x = self . bn1 ( x )
x = F . relu ( x )
x = self . conv2 ( x )
x = self . bn2 ( x )
x = F . relu ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . fc1 ( x )
x = F . sigmoid ( x )
x = self . fc2 ( x )
return x
model = MyCNNClassifier ( 1 , 10 )
print ( model )
MyCNNClassifier(
(conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc1): Linear(in_features=50176, out_features=1024, bias=True)
(fc2): Linear(in_features=1024, out_features=10, bias=True)
)
Ini adalah pengklasifikasi yang sangat sederhana dengan bagian pengkodean yang menggunakan dua lapisan dengan konvs 3x3 + batchnorm + relu dan bagian decoding dengan dua lapisan linier. Jika Anda bukan orang baru di PyTorch, Anda mungkin pernah melihat jenis pengkodean ini sebelumnya, tetapi ada dua masalah.
Jika kita ingin menambahkan layer kita harus menulis banyak kode lagi di __init__
dan di fungsi forward
. Selain itu, jika kita memiliki beberapa blok umum yang ingin kita gunakan di model lain, misalnya konv 3x3 + batchnorm + relu, kita harus menulisnya lagi.
Sequential adalah wadah Modul yang dapat ditumpuk dan dijalankan secara bersamaan.
Anda dapat memperhatikan bahwa kita harus menyimpan segalanya dalam self
. Kita dapat menggunakan Sequential
untuk meningkatkan kode kita.
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , n_classes ):
super (). __init__ ()
self . conv_block1 = nn . Sequential (
nn . Conv2d ( in_c , 32 , kernel_size = 3 , stride = 1 , padding = 1 ),
nn . BatchNorm2d ( 32 ),
nn . ReLU ()
)
self . conv_block2 = nn . Sequential (
nn . Conv2d ( 32 , 64 , kernel_size = 3 , stride = 1 , padding = 1 ),
nn . BatchNorm2d ( 64 ),
nn . ReLU ()
)
self . decoder = nn . Sequential (
nn . Linear ( 64 * 28 * 28 , 1024 ),
nn . Sigmoid (),
nn . Linear ( 1024 , n_classes )
)
def forward ( self , x ):
x = self . conv_block1 ( x )
x = self . conv_block2 ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , 10 )
print ( model )
MyCNNClassifier(
(conv_block1): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv_block2): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(decoder): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
(2): Linear(in_features=1024, out_features=10, bias=True)
)
)
Jauh Lebih Baik uhu?
Apakah Anda memperhatikan bahwa conv_block1
dan conv_block2
terlihat hampir sama? Kita dapat membuat fungsi yang mengembalikan nn.Sequential
bahkan untuk menyederhanakan kode!
def conv_block ( in_f , out_f , * args , ** kwargs ):
return nn . Sequential (
nn . Conv2d ( in_f , out_f , * args , ** kwargs ),
nn . BatchNorm2d ( out_f ),
nn . ReLU ()
)
Kemudian kita bisa memanggil fungsi ini di Modul kita
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , n_classes ):
super (). __init__ ()
self . conv_block1 = conv_block ( in_c , 32 , kernel_size = 3 , padding = 1 )
self . conv_block2 = conv_block ( 32 , 64 , kernel_size = 3 , padding = 1 )
self . decoder = nn . Sequential (
nn . Linear ( 64 * 28 * 28 , 1024 ),
nn . Sigmoid (),
nn . Linear ( 1024 , n_classes )
)
def forward ( self , x ):
x = self . conv_block1 ( x )
x = self . conv_block2 ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , 10 )
print ( model )
MyCNNClassifier(
(conv_block1): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv_block2): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(decoder): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
(2): Linear(in_features=1024, out_features=10, bias=True)
)
)
Bahkan lebih bersih! Tetap saja conv_block1
dan conv_block2
hampir sama! Kita dapat menggabungkannya menggunakan nn.Sequential
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , n_classes ):
super (). __init__ ()
self . encoder = nn . Sequential (
conv_block ( in_c , 32 , kernel_size = 3 , padding = 1 ),
conv_block ( 32 , 64 , kernel_size = 3 , padding = 1 )
)
self . decoder = nn . Sequential (
nn . Linear ( 64 * 28 * 28 , 1024 ),
nn . Sigmoid (),
nn . Linear ( 1024 , n_classes )
)
def forward ( self , x ):
x = self . encoder ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , 10 )
print ( model )
MyCNNClassifier(
(encoder): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(decoder): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
(2): Linear(in_features=1024, out_features=10, bias=True)
)
)
self.encoder
sekarang menampung booth conv_block
. Kami telah memisahkan logika untuk model kami dan membuatnya lebih mudah dibaca dan digunakan kembali. Fungsi conv_block
kami dapat diimpor dan digunakan di model lain.
Bagaimana jika kita dapat menambahkan lapisan baru di self.encoder
, membuat hardcode tidak nyaman:
self . encoder = nn . Sequential (
conv_block ( in_c , 32 , kernel_size = 3 , padding = 1 ),
conv_block ( 32 , 64 , kernel_size = 3 , padding = 1 ),
conv_block ( 64 , 128 , kernel_size = 3 , padding = 1 ),
conv_block ( 128 , 256 , kernel_size = 3 , padding = 1 ),
)
Akankah lebih baik jika kita dapat mendefinisikan ukuran sebagai array dan secara otomatis membuat semua layer tanpa menulis satu per satu? Untungnya kita bisa membuat array dan meneruskannya ke Sequential
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , n_classes ):
super (). __init__ ()
self . enc_sizes = [ in_c , 32 , 64 ]
conv_blocks = [ conv_block ( in_f , out_f , kernel_size = 3 , padding = 1 )
for in_f , out_f in zip ( self . enc_sizes , self . enc_sizes [ 1 :])]
self . encoder = nn . Sequential ( * conv_blocks )
self . decoder = nn . Sequential (
nn . Linear ( 64 * 28 * 28 , 1024 ),
nn . Sigmoid (),
nn . Linear ( 1024 , n_classes )
)
def forward ( self , x ):
x = self . encoder ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , 10 )
print ( model )
MyCNNClassifier(
(encoder): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(decoder): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
(2): Linear(in_features=1024, out_features=10, bias=True)
)
)
Mari kita uraikan. Kami membuat array self.enc_sizes
yang menampung ukuran encoder kami. Kemudian kita membuat array conv_blocks
dengan mengulangi ukurannya. Karena kita harus memberikan ukuran dan ukuran luar pada stan untuk setiap lapisan, kita zip
array ukurannya dengan sendirinya dengan menggesernya satu per satu.
Supaya lebih jelas, perhatikan contoh berikut ini:
sizes = [ 1 , 32 , 64 ]
for in_f , out_f in zip ( sizes , sizes [ 1 :]):
print ( in_f , out_f )
1 32
32 64
Kemudian, karena Sequential
tidak menerima daftar, kami menguraikannya dengan menggunakan operator *
.
Tada! Sekarang jika kita hanya ingin menambahkan ukuran, kita dapat dengan mudah menambahkan nomor baru ke dalam daftar. Merupakan praktik umum untuk menjadikan ukuran sebagai parameter.
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , enc_sizes , n_classes ):
super (). __init__ ()
self . enc_sizes = [ in_c , * enc_sizes ]
conv_blocks = [ conv_block ( in_f , out_f , kernel_size = 3 , padding = 1 )
for in_f , out_f in zip ( self . enc_sizes , self . enc_sizes [ 1 :])]
self . encoder = nn . Sequential ( * conv_blocks )
self . decoder = nn . Sequential (
nn . Linear ( 64 * 28 * 28 , 1024 ),
nn . Sigmoid (),
nn . Linear ( 1024 , n_classes )
)
def forward ( self , x ):
x = self . encoder ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , [ 32 , 64 , 128 ], 10 )
print ( model )
MyCNNClassifier(
(encoder): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(2): Sequential(
(0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(decoder): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
(2): Linear(in_features=1024, out_features=10, bias=True)
)
)
Kita dapat melakukan hal yang sama untuk bagian decoder
def dec_block ( in_f , out_f ):
return nn . Sequential (
nn . Linear ( in_f , out_f ),
nn . Sigmoid ()
)
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , enc_sizes , dec_sizes , n_classes ):
super (). __init__ ()
self . enc_sizes = [ in_c , * enc_sizes ]
self . dec_sizes = [ 64 * 28 * 28 , * dec_sizes ]
conv_blocks = [ conv_block ( in_f , out_f , kernel_size = 3 , padding = 1 )
for in_f , out_f in zip ( self . enc_sizes , self . enc_sizes [ 1 :])]
self . encoder = nn . Sequential ( * conv_blocks )
dec_blocks = [ dec_block ( in_f , out_f )
for in_f , out_f in zip ( self . dec_sizes , self . dec_sizes [ 1 :])]
self . decoder = nn . Sequential ( * dec_blocks )
self . last = nn . Linear ( self . dec_sizes [ - 1 ], n_classes )
def forward ( self , x ):
x = self . encoder ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , [ 32 , 64 ], [ 1024 , 512 ], 10 )
print ( model )
MyCNNClassifier(
(encoder): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(decoder): Sequential(
(0): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
)
(1): Sequential(
(0): Linear(in_features=1024, out_features=512, bias=True)
(1): Sigmoid()
)
)
(last): Linear(in_features=512, out_features=10, bias=True)
)
Kami mengikuti pola yang sama, kami membuat blok baru untuk bagian decoding, linier + sigmoid, dan kami meneruskan array dengan ukurannya. Kami harus menambahkan self.last
karena kami tidak ingin mengaktifkan output
Sekarang, kita bahkan dapat membagi model kita menjadi dua! Enkoder + Dekoder
class MyEncoder ( nn . Module ):
def __init__ ( self , enc_sizes ):
super (). __init__ ()
self . conv_blocks = nn . Sequential ( * [ conv_block ( in_f , out_f , kernel_size = 3 , padding = 1 )
for in_f , out_f in zip ( enc_sizes , enc_sizes [ 1 :])])
def forward ( self , x ):
return self . conv_blocks ( x )
class MyDecoder ( nn . Module ):
def __init__ ( self , dec_sizes , n_classes ):
super (). __init__ ()
self . dec_blocks = nn . Sequential ( * [ dec_block ( in_f , out_f )
for in_f , out_f in zip ( dec_sizes , dec_sizes [ 1 :])])
self . last = nn . Linear ( dec_sizes [ - 1 ], n_classes )
def forward ( self , x ):
return self . dec_blocks ()
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , enc_sizes , dec_sizes , n_classes ):
super (). __init__ ()
self . enc_sizes = [ in_c , * enc_sizes ]
self . dec_sizes = [ self . enc_sizes [ - 1 ] * 28 * 28 , * dec_sizes ]
self . encoder = MyEncoder ( self . enc_sizes )
self . decoder = MyDecoder ( self . dec_sizes , n_classes )
def forward ( self , x ):
x = self . encoder ( x )
x = x . flatten ( 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , [ 32 , 64 ], [ 1024 , 512 ], 10 )
print ( model )
MyCNNClassifier(
(encoder): MyEncoder(
(conv_blocks): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
)
)
(decoder): MyDecoder(
(dec_blocks): Sequential(
(0): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
)
(1): Sequential(
(0): Linear(in_features=1024, out_features=512, bias=True)
(1): Sigmoid()
)
)
(last): Linear(in_features=512, out_features=10, bias=True)
)
)
Ketahuilah bahwa MyEncoder
dan MyDecoder
juga bisa menjadi fungsi yang mengembalikan nn.Sequential
. Saya lebih suka menggunakan pola pertama untuk model dan pola kedua untuk blok penyusun.
Dengan memasukkan modul kita ke dalam submodul, akan lebih mudah untuk membagikan kode, melakukan debug , dan mengujinya .
ModuleList
memungkinkan Anda menyimpan Module
sebagai daftar. Ini bisa berguna ketika Anda perlu melakukan iterasi melalui lapisan dan menyimpan/menggunakan beberapa informasi, seperti di U-net.
Perbedaan utama antara Sequential
adalah ModuleList
tidak memiliki metode forward
sehingga lapisan dalam tidak terhubung. Dengan asumsi kita membutuhkan setiap keluaran dari setiap lapisan di decoder, kita dapat menyimpannya dengan:
class MyModule ( nn . Module ):
def __init__ ( self , sizes ):
super (). __init__ ()
self . layers = nn . ModuleList ([ nn . Linear ( in_f , out_f ) for in_f , out_f in zip ( sizes , sizes [ 1 :])])
self . trace = []
def forward ( self , x ):
for layer in self . layers :
x = layer ( x )
self . trace . append ( x )
return x
model = MyModule ([ 1 , 16 , 32 ])
import torch
model ( torch . rand (( 4 , 1 )))
[ print ( trace . shape ) for trace in model . trace ]
torch.Size([4, 16])
torch.Size([4, 32])
[None, None]
Bagaimana jika kita ingin beralih ke LearkyRelu
di conv_block
kita? Kita dapat menggunakan ModuleDict
untuk membuat kamus Module
dan mengganti Module
secara dinamis kapan pun kita mau
def conv_block ( in_f , out_f , activation = 'relu' , * args , ** kwargs ):
activations = nn . ModuleDict ([
[ 'lrelu' , nn . LeakyReLU ()],
[ 'relu' , nn . ReLU ()]
])
return nn . Sequential (
nn . Conv2d ( in_f , out_f , * args , ** kwargs ),
nn . BatchNorm2d ( out_f ),
activations [ activation ]
)
print ( conv_block ( 1 , 32 , 'lrelu' , kernel_size = 3 , padding = 1 ))
print ( conv_block ( 1 , 32 , 'relu' , kernel_size = 3 , padding = 1 ))
Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
Mari kita selesaikan semuanya!
def conv_block ( in_f , out_f , activation = 'relu' , * args , ** kwargs ):
activations = nn . ModuleDict ([
[ 'lrelu' , nn . LeakyReLU ()],
[ 'relu' , nn . ReLU ()]
])
return nn . Sequential (
nn . Conv2d ( in_f , out_f , * args , ** kwargs ),
nn . BatchNorm2d ( out_f ),
activations [ activation ]
)
def dec_block ( in_f , out_f ):
return nn . Sequential (
nn . Linear ( in_f , out_f ),
nn . Sigmoid ()
)
class MyEncoder ( nn . Module ):
def __init__ ( self , enc_sizes , * args , ** kwargs ):
super (). __init__ ()
self . conv_blocks = nn . Sequential ( * [ conv_block ( in_f , out_f , kernel_size = 3 , padding = 1 , * args , ** kwargs )
for in_f , out_f in zip ( enc_sizes , enc_sizes [ 1 :])])
def forward ( self , x ):
return self . conv_blocks ( x )
class MyDecoder ( nn . Module ):
def __init__ ( self , dec_sizes , n_classes ):
super (). __init__ ()
self . dec_blocks = nn . Sequential ( * [ dec_block ( in_f , out_f )
for in_f , out_f in zip ( dec_sizes , dec_sizes [ 1 :])])
self . last = nn . Linear ( dec_sizes [ - 1 ], n_classes )
def forward ( self , x ):
return self . dec_blocks ()
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , enc_sizes , dec_sizes , n_classes , activation = 'relu' ):
super (). __init__ ()
self . enc_sizes = [ in_c , * enc_sizes ]
self . dec_sizes = [ 32 * 28 * 28 , * dec_sizes ]
self . encoder = MyEncoder ( self . enc_sizes , activation = activation )
self . decoder = MyDecoder ( dec_sizes , n_classes )
def forward ( self , x ):
x = self . encoder ( x )
x = x . flatten ( 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , [ 32 , 64 ], [ 1024 , 512 ], 10 , activation = 'lrelu' )
print ( model )
MyCNNClassifier(
(encoder): MyEncoder(
(conv_blocks): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(decoder): MyDecoder(
(dec_blocks): Sequential(
(0): Sequential(
(0): Linear(in_features=1024, out_features=512, bias=True)
(1): Sigmoid()
)
)
(last): Linear(in_features=512, out_features=10, bias=True)
)
)
Jadi, secara ringkas.
Module
ketika Anda memiliki blok besar yang terdiri dari beberapa blok kecilSequential
ketika Anda ingin membuat blok kecil dari lapisanModuleList
ketika Anda perlu mengulangi beberapa lapisan atau blok penyusun dan melakukan sesuatuModuleDict
ketika Anda perlu memparametisasi beberapa blok model Anda, misalnya fungsi aktivasiItu saja semuanya!
Terima kasih telah membaca